УДК 517.53

M. P. MAHOLA, P. V. FILEVYCH

THE ANGULAR VALUE DISTRIBUTION OF RANDOM ANALYTIC FUNCTIONS

M. P. Mahola, P. V. Filevych. The angular value distribution of random analytic functions, Mat. Stud. **37** (2012), 34–51.

Let $\mathcal{R} \in (0, +\infty]$, $f(z) = \sum c_n z^n$ be an analytic function in the disk $\{z: |z| < \mathcal{R}\}$, $T_f(r)$ be the Nevanlinna characteristic, $N_f(r, \alpha, \beta, a)$ be the integrated counting function of *a*-points of *f* in the sector $0 < |z| \leq r$, $\alpha \leq \arg_{\alpha} z < \beta$, and $(\omega_n(\omega))$ be a sequence of independent equidistributed on [0,1] random variables. Under some conditions on the growth of *f* it is proved that for random analytic function $f_{\omega}(z) = \sum e^{2\pi i \omega_n(\omega)} a_n z^n$ almost surely for every $a \in \mathbb{C}$ and all $\alpha < \beta \leq \alpha + 2\pi$ the relation $N_{f_{\omega}}(r, \alpha, \beta, a) \sim \frac{\beta - \alpha}{2\pi} T_{f_{\omega}}(r), r \to \mathcal{R}$, holds outside some exceptional set $E \subset (0, \mathcal{R})$.

М. П. Магола, П. В. Филевич. Угловое распределение значений случайных аналитических функций // Мат. Студії. – 2012. – Т.37, №1. – С.34–51.

Пусть $\mathcal{R} \in (0, +\infty], f(z) = \sum c_n z^n$ — аналитическая в круге $\{z : |z| < \mathcal{R}\}$ функция, $T_f(r)$ — характеристика Неванлинны, $N_f(r, \alpha, \beta, a)$ — усредненная считающая функция *a*-точек функции f в секторе $0 < |z| \leq r, \alpha \leq \arg_{\alpha} z < \beta$, а $(\omega_n(\omega))$ — последовательность независимых равномерно распределенных на [0, 1] случайных величин. При некоторых условиях на рост f доказано, что для случайной аналитической функции $f_{\omega}(z) = \sum e^{2\pi i \omega_n(\omega)} a_n z^n$ почти наверное для всех $a \in \mathbb{C}$ и любых $\alpha < \beta \leq \alpha + 2\pi$ вне некоторого исключительного множества $E \subset (0, \mathcal{R})$ выполняется соотношение $N_{f_{\omega}}(r, \alpha, \beta, a) \sim \frac{\beta - \alpha}{2\pi} T_{f_{\omega}}(r), r \to \mathcal{R}.$

1. Introduction. Let $\mathcal{D}(r) = \{z \in \mathbb{C} : |z| < r\}$ for all $r \in (0, +\infty]$, $\ln^+ x = \ln \max\{x, 1\}$ for each $x \in [0, +\infty)$, and $\mathcal{S}(r, \alpha, \beta) = \{z \in \mathbb{C} : 0 < |z| \le r, \alpha \le \arg_{\alpha} z < \beta\}$ for any $\alpha, \beta \in \mathbb{R}$ such that $\alpha < \beta \le \alpha + 2\pi$ (here, for a complex number $z \ne 0$, $\arg_{\alpha} z$ is the value of its argument, which belongs to the interval $[\alpha, \alpha + 2\pi)$). By L we denote the class of positive unbounded nondecreasing functions on $[0, +\infty)$.

We consider a measurable set $E \subset \mathbb{R}$, and let $\mathcal{R} \in (0, +\infty]$. As usual, if $\mathcal{R} = +\infty$ $(\mathcal{R} < +\infty)$, then the integral

$$\int_{E\cap(1,+\infty)} \frac{dr}{r} \quad \left(\int_{E\cap(0,\mathcal{R})} \frac{dr}{\mathcal{R}-r}\right)$$

is called the logarithmic measure of the set E on $(0, \mathcal{R})$. The limits

$$\lim_{r \to +\infty} \int_{E \cap (0,r)} \frac{dt}{r}, \ \lim_{r \to +\infty} \int_{E \cap (0,r)} \frac{dt}{r} \quad \left(\lim_{r \to \mathcal{R}} \int_{E \cap (0,r)} \frac{(\mathcal{R} - r)dt}{(\mathcal{R} - t)^2}, \ \lim_{r \to \mathcal{R}} \int_{E \cap (0,r)} \frac{(\mathcal{R} - r)dt}{(\mathcal{R} - t)^2} \right)$$

2010 Mathematics Subject Classification: 30B20, 30D20, 30D35.

Keywords: meromorphic function, value distribution, random analytic function, Nevanlinna characteristic, counting function, integrated counting function.

are called the upper density and the lower density of the set E on $(0, \mathcal{R})$, respectively.

We say that a set E has density d on $(0, \mathcal{R})$, if its upper density and its lower density on $(0, \mathcal{R})$ are equal to d. It is easy to prove that every set E of finite logarithmic measure on $(0, \mathcal{R})$ has density 0 on $(0, \mathcal{R})$.

All functions meromorphic (in particular, analytic) in a disk considered below are assumed to be different from constants.

We use the standard notations from the value distribution theory of meromorphic functions ([1, 2]). In particular, if $\mathcal{R} \in (0, +\infty]$, $r \in (0, \mathcal{R})$, $\alpha < \beta \leq \alpha + 2\pi$, and f is a function meromorphic in $\mathcal{D}(\mathcal{R})$, then let $n_f(r)$ be the counting functions of poles of the function f, $\tilde{n}_f(r) = n_f(r) - n_f(0)$, and $\tilde{n}_f(r, \alpha, \beta)$ be the counting functions of poles of the function f in the sector $\mathcal{S}(r, \alpha, \beta)$. We define the integrated counting functions of poles, integrated counting functions of poles in the sector $\mathcal{S}(r, \alpha, \beta)$, proximity function, Nevanlinna characteristic, and maximum modulus of the function f by

$$N_f(r) = \int_0^r \tilde{n}_f(t) \frac{dt}{t} + n_f(0) \ln r, \quad N_f(r, \alpha, \beta) = \int_0^r \tilde{n}_f(t, \alpha, \beta) \frac{dt}{t} + \frac{\beta - \alpha}{2\pi} n_f(0) \ln r,$$
$$m_f(r) = \frac{1}{2\pi} \int_0^{2\pi} \ln^+ |f(re^{i\theta})| d\theta, \quad T_f(r) = N_f(r) + m_f(r), \quad M_f(r) = \sup\{|f(z)| : |z| = r\},$$

respectively. For every $a \in \mathbb{C}$ we put $X_f(r, a) := X_{\frac{1}{f-a}}(r)$, where X is some of the characteristics n, \tilde{n}, N, m or $T, \tilde{n}_f(r, \alpha, \beta, a) = \tilde{n}_{\frac{1}{f-a}}(r, \alpha, \beta), N_f(r, \alpha, \beta, a) = N_{\frac{1}{f-a}}(r, \alpha, \beta)$, and let $c_f(a)$ be the first non-zero coefficient in the Laurent series of the function f(z) - a in a neighborhood of the point z = 0.

Denote by $\mathcal{H}(\mathcal{R})$ the class of all functions analytic in the disk $\mathcal{D}(\mathcal{R})$ of the form

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \tag{1}$$

such that $S_f(r) := (\sum_{n=0}^{\infty} |c_n|^2 r^{2n})^{\frac{1}{2}} \to +\infty \ (r \to \mathcal{R}).$

Consider a probability space (Ω, \mathcal{A}, P) , where Ω is some set, \mathcal{A} is a σ -algebra of subset of Ω , P is a complete probability measure on (Ω, \mathcal{A}) , and suppose that on this space there exists a Steinhaus sequence $(\omega_n(\omega))$, i. e. a sequence of independent uniformly distributed on [0, 1] random variables (see [3]). From now on we assume that such a probabilistic space and a corresponding Steinhaus sequence are given and fixed.

Along with an analytic function $f \in \mathcal{H}(\mathcal{R})$ of the form (1) we consider the random analytic function

$$f_{\omega}(z) = \sum_{n=0}^{\infty} e^{2\pi i \omega_n(\omega)} c_n z^n.$$
 (2)

The value distribution of random analytic functions of form (2) were studied in the papers [4] (for $\mathcal{R} = 1$) and [5] (for $\mathcal{R} = +\infty$). In particular, in [5] it is proved the following theorems (Theorem A is proved for $\mathcal{R} = +\infty$).

Theorem A. Let $\mathcal{R} \in (0, +\infty]$, and $f \in \mathcal{H}(\mathcal{R})$ be an analytic function of form (1). Then for the random analytic function defined by (2) almost surely (a. s.) the inequality

$$\ln S_f(r) \le N_{f_\omega}(r,0) + C_0 \ln N_{f_\omega}(r,0) \quad (r_0(\omega) \le r < \mathcal{R})$$

holds, where $C_0 > 0$ is an absolute constant.

Theorem B. Let f be an entire function of form (1), $\varphi \in L$, and $\int_0^{+\infty} \frac{dx}{\varphi(x)} < +\infty$. Then there exists a set E of finite logarithmic measure on $(0, +\infty)$ such that for the random entire function defined by (2) a. s. for every $a \in \mathbb{C}$ we have

$$\ln S_f(r) \le N_{f_\omega}(r,a) + \ln^2 N_{f_\omega}(r,a)\varphi(\ln N_{f_\omega}(r,a)) \quad (r \ge r_0(\omega,a), \ r \notin E).$$

The proof of Theorem A for the case $\mathcal{R} \in (0, +\infty)$ is analogous to that for the case $\mathcal{R} = +\infty$ given in [5]. So, we assume that Theorem A is proved for all $\mathcal{R} \in (0, +\infty]$.

In this paper we consider some problems concerning the angular value distribution of random analytic functions of form (2). We also use some refinements to make Theorem B more precise.

Note that questions about the angular value distribution of analytic functions in the terms of characteristic $N_f(r, \alpha, \beta, a)$ were investigated in [6]–[8]. Mainly these papers deal with entire functions (in particular, entire functions presented by lacunary power series), satisfying the condition

$$\ln M_f(r) \sim T_f(r) \quad (E_1 \ni r \to +\infty), \tag{3}$$

where E_1 is a set, that is large in some sense. The following result of W. K. Hayman and J. F. Rossi [8] is one of the most general in this direction.

Theorem C. Let f be an entire function of the order

$$\rho_f := \lim_{r \to +\infty} \frac{\ln \ln M_f(r)}{\ln r} > 0$$

such that relation (3) holds on a set E_1 of density 1 on $(0, +\infty)$. Then there exists a set E_2 of upper density 1 on $(0, +\infty)$ such that for every $a \in \mathbb{C}$ and all $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta \leq \alpha + 2\pi$, we have

$$N_f(r, \alpha, \beta, a) \sim \frac{\beta - \alpha}{2\pi} T_f(r) \quad (E_2 \ni r \to +\infty).$$

The next assertion follows from Theorems A and C.

Corollary A. Let f be an entire function of the order $\rho_f > 0$ and form (1). Then for the random entire function defined by (2) a. s. there exists a set E_{ω} of upper density 1 on $(0, +\infty)$ such that

$$N_{f_{\omega}}(r,\alpha,\beta,a) \sim \frac{\beta-\alpha}{2\pi} \ln S_f(r)$$
 (4)

as $E_{\omega} \ni r \to +\infty$ for every $a \in \mathbb{C}$ and all $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$.

We omit a justification of Corollary A, since below we shall prove a stronger statement. The following theorems are the main results of our paper.

Theorem 1. Let $\mathcal{R} \in (0, +\infty]$, and let $f \in \mathcal{H}(\mathcal{R})$ be an analytic function of form (1). Then there exists a function $h \in L$ such that for the random analytic function defined by (2) a. s. for every $a \in \mathbb{C}$ the inequality

$$\ln S_f(r) \le N_{f_{\omega}}(r, a) + C_1 \ln \ln S_f(R) + \ln \frac{R}{R - r} + h(|a|) \quad (r_1(\omega) \le r < R < \mathcal{R}), \quad (5)$$

holds, where $C_1 > 0$ is an absolute constant.

Theorem 2. Let $\mathcal{R} \in (0, +\infty]$, let $f \in \mathcal{H}(\mathcal{R})$ be an analytic function of form (1), let $r_0 \in (0, \mathcal{R})$ be an arbitrary fixed number such that $S_f(r_0) \geq \max\{e, \sqrt{1 + |c_0|^2}\}$, and

$$l_f(r) = \min\left\{\ln\ln S_f(R) + \ln\frac{R}{R-r} \colon R \in [r,\mathcal{R})\right\} \quad (r_0 < r < \mathcal{R}).$$

Then for the random analytic function defined by (2) a. s. for every $a \in \mathbb{C}$ there exists a constant $C = C(\omega, a) > 0$ such that for all $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta \leq \alpha + 2\pi$, we have

$$N_{f_{\omega}}(r,\alpha,\beta,a) \le \frac{\beta - \alpha}{2\pi} \ln S_f(r) + C_2 \left(\ln^2 (S_f(r) + C) \int_{r_0}^r (l_f(t) + C) \ln \frac{r}{t} \frac{dt}{t} \right)^{\frac{1}{3}} + C$$

for each $r \in (r_0, \mathcal{R})$, where $C_2 > 0$ is an absolute constant.

Next, we formulate some corollaries from Theorems 1 and 2.

Corollary 1. Let f be an entire function of form (1). Then there exist a function $h \in L$ and a set E_3 of finite logarithmic measure on $(0, +\infty)$ such that for the random entire function defined by (2) a. s. for every $a \in \mathbb{C}$ the inequality

$$\ln S_f(r) \le N_{f_{\omega}}(r, a) + C_3 \ln \ln S_f(r) + h(|a|) \quad (r \ge r_2(\omega), \ r \notin E_3)$$
(6)

holds, where $C_3 > 0$ is an absolute constant.

Corollary 2. Let f be an entire function of form (1) such that

$$\overline{\lim_{r \to +\infty}} \frac{\ln S_f(r)}{\ln^2 r \ln \ln r} = +\infty.$$
(7)

Then there exists a set E_4 of upper density 1 on $(0, +\infty)$ such that for the random entire function defined by (2) a. s. for every $a \in \mathbb{C}$ and all $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, relation (4) holds as $E_4 \ni r \to +\infty$.

Corollary 3. Let $\rho \in (0, +\infty)$, and let f be an entire function of the order $\rho_f \geq \rho$ and form (1). Then there exists a set E_5 of upper density 1 on $(0, +\infty)$ such that for the random entire function defined by (2) a. s. for every $a \in \mathbb{C}$ and all $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta \leq \alpha + 2\pi$, the inequality

$$\left| N_{f_{\omega}}(r,\alpha,\beta,a) - \frac{\beta - \alpha}{2\pi} \ln S_f(r) \right| \le \frac{C_4}{\sqrt[3]{\rho^2}} \ln^{\frac{2}{3}} S_f(r) \ln \ln S_f(r) \quad (r \ge r_3(\omega,a), \ r \in E_5)$$
(8)

holds, where $C_4 > 0$ is an absolute constant.

Corollary 4. Let f be an entire function of finite order and form (1). Then for the random entire function defined by (2) a. s. for every $a \in \mathbb{C}$ we have

$$N_{f_{\omega}}(r,a) \sim \ln S_f(r) \quad (r \to +\infty).$$
 (9)

Corollary 5. Let f be an entire function of finite order and form (1) such that

$$\lim_{r \to +\infty} \frac{\ln S_f(r)}{\ln^3 r} = +\infty.$$
(10)

Then for the random entire function defined by (2) a. s. for every $a \in \mathbb{C}$ and all $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta \leq \alpha + 2\pi$, relation (4) holds as $r \to +\infty$.

Corollary 6. Let $\mathcal{R} \in (0, +\infty)$, and let $f \in \mathcal{H}(\mathcal{R})$ be an analytic function of form (1) such that

$$\overline{\lim_{r \to \mathcal{R}}} \, \frac{\ln S_f(r)}{\ln \frac{1}{\mathcal{R} - r}} = +\infty.$$
(11)

Then there exists a set E_6 of upper density 1 on $(0, \mathcal{R})$ such that for the random analytic function defined by (2) a. s. for every $a \in \mathbb{C}$ and all $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta \leq \alpha + 2\pi$, relation (4) holds as $E_6 \ni r \to \mathcal{R}$.

Concluding the Introduction, we note that the value distribution and other properties of some classes of random analytic functions were investigated also in [9]–[24].

2. Auxiliary results. Let $x_1, \ldots, x_n \in [0, +\infty)$. The following inequalities

$$\ln^{+} \left| \prod_{\nu=1}^{n} x_{\nu} \right| \le \sum_{\nu=1}^{n} \ln^{+} |x_{n}|, \quad \ln^{+} \left| \sum_{\nu=1}^{n} x_{\nu} \right| \le \sum_{\nu=1}^{n} \ln^{+} |x_{n}| + \ln n$$

are well known (see, for example, [2], p. 14). Below we will use these inequalities without additional explanations.

The following lemma is proved in [25].

Lemma A. Let $\mathcal{R} \in (0, +\infty]$, and let g be a meromorphic function in the disk $\mathcal{D}(\mathcal{R})$ such that g(0) = 1. Then for arbitrary $\alpha, \beta \in (0, 1)$ the inequality

$$\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{g'(re^{i\theta})}{g(re^{i\theta})} \right|^{\alpha} d\theta \le C(\alpha,\beta) \left(\frac{T_g(R)}{r} \frac{R}{R-r} \right)^{\alpha} \quad (0 < r < R < \mathcal{R})$$
(12)

is true, where

$$C(\alpha,\beta) = \left(\frac{2}{1-\beta}\right)^{\alpha} + \left(\frac{4 + \left(2^{\frac{1+\alpha}{1-\alpha}} + 2^{\frac{2+\alpha}{1-\alpha}}\right)^{1-\alpha}}{\beta^{\alpha}}\right) \sec \frac{\alpha\pi}{2}.$$

For a function f meromorphic in $\mathcal{D}(\mathcal{R})$ and every $z \in \mathcal{D}(\mathcal{R})$ we put $g^*(z) = zg'(z)$. Then inequality (12) is equivalent to the inequality

$$\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{g^*(re^{i\theta})}{g(re^{i\theta})} \right|^{\alpha} d\theta \le C(\alpha,\beta) \left(T_g(R) \frac{R}{R-r} \right)^{\alpha} \quad (0 < r < R < \mathcal{R}).$$
(13)

Arguing as in the paper [26] in the proof of its main result, and using inequality (13) instead of inequality (12), it is easy to prove the following statement.

Lemma B. Let $\mathcal{R} \in (0, +\infty]$, and let g be a function meromorphic in the disk $\mathcal{D}(\mathcal{R})$ such that g(0) = 1. Then

$$m_{\frac{g^*}{g}}(r) \le \ln^+ \left(T_g(R) \frac{R}{R-r} \right) + 4,8517 \quad (0 < r < R < \mathcal{R}).$$

Lemma 1. Let $\mathcal{F} \subset [0, 2\pi]$ be a measurable set, $\mathcal{R} \in (0, +\infty]$, $r \in (0, \mathcal{R})$, f be a function analytic in the disk $\mathcal{D}(\mathcal{R})$ of form (1). Then

$$\frac{1}{2\pi} \int_{\mathcal{F}} \ln^+ |f(re^{i\theta})| d\theta \le \frac{1}{2e} + \frac{\mu(\mathcal{F})}{2\pi} \ln^+ S_f(r), \tag{14}$$

where $\mu(\mathcal{F})$ is the Lebesgue measure of the set \mathcal{F} .

Proof. Let $\mathcal{E} = \{\theta \in \mathcal{F} : |f(re^{i\theta})| > 1\}$. If $\mu(\mathcal{E}) = 0$ then inequality (14) is trivial. If $\mu(\mathcal{E}) > 0$, then, using the Jensen inequality (see, for example, [27], p. 42)

$$\frac{1}{\mu(\mathcal{E})} \int_{\mathcal{E}} \ln |f(re^{i\theta})|^2 d\theta \le \ln \left(\frac{1}{\mu(\mathcal{E})} \int_{\mathcal{E}} |f(re^{i\theta})|^2 d\theta \right)$$

and the Parseval equality

$$\int_{0}^{2\pi} |f(re^{i\theta})|^2 d\theta = 2\pi S_f^2(r),$$

we obtain

$$\frac{1}{2\pi} \int_{\mathcal{F}} \ln^{+} |f(re^{i\theta})| d\theta = \frac{1}{4\pi} \int_{\mathcal{E}} \ln |f(re^{i\theta})|^{2} d\theta \leq \frac{\mu(\mathcal{E})}{4\pi} \ln \left(\frac{1}{\mu(\mathcal{E})} \int_{\mathcal{E}} |f(re^{i\theta})|^{2} d\theta\right) \leq \frac{\mu(\mathcal{E})}{4\pi} \ln \left(\frac{1}{\mu(\mathcal{E})} \int_{0}^{2\pi} |f(re^{i\theta})|^{2} d\theta\right) = \frac{\mu(\mathcal{E})}{4\pi} \ln \frac{2\pi}{\mu(\mathcal{E})} + \frac{\mu(\mathcal{E})}{2\pi} \ln S_{f}(r).$$

Since the most value of the function $y(x) = \frac{x}{2} \ln \frac{1}{x}$ on the interval $(0, +\infty)$ is equal to $\frac{1}{2e}$, Lemma 1 is proved.

Lemma 2. Let $\mathcal{R} \in (0, +\infty]$, and let f be a function analytic in the disk $\mathcal{D}(\mathcal{R})$. Then for every $a \in \mathbb{C}$ and all $r, R \in (0, \mathcal{R}), r < R$, we have

$$m_{\frac{f^*}{f-a}}(r) \le \ln^+ \ln^+ S_f(R) + \ln \frac{R}{R-r} + \ln^+ \frac{1}{|c_f(a)|} + n_f(0,a) \ln^+ \frac{1}{R} + \ln^+ n_f(0,a) + \ln^+ |a| + 7.$$
(15)

Proof. We fix arbitrary $a \in \mathbb{C}$ and $r, R \in (0, \mathcal{R}), r < R$. Put

$$g(z) = \frac{f(z) - a}{c_f(a) z^{n_f(0,a)}} \quad (z \in \mathcal{D}(\mathcal{R})).$$

It is easily verified that

$$\frac{f^*(z)}{f(z)-a} = \frac{g^*(z)}{g(z)} + n_f(0,a) \quad (z \in \mathcal{D}(\mathcal{R})).$$

Consequently,

$$m_{\frac{f^*}{f-a}}(r) \le m_{\frac{g^*}{g}}(r) + \ln^+ n_f(0,a) + \ln 2.$$
 (16)

In addition, g(0) = 1. Therefore, by Lemma B, we have

$$m_{\frac{g^*}{g}}(r) \le \ln^+ T_g(R) + \ln \frac{R}{R-r} + 4,8517.$$
 (17)

Next note that Lemma 1 implies the inequality

$$T_f(r) \le \frac{1}{2e} + \ln^+ S_f(r) \quad (r \in (0, \mathcal{R})).$$
 (18)

Using this inequality with R instead of r, we obtain

$$\ln^{+} T_{g}(R) \leq \ln^{+} T_{f}(R) + \ln^{+} |a| + \ln 2 + \ln^{+} \frac{1}{|c_{f}(a)|} + n_{f}(0, a) \ln^{+} \frac{1}{R} \leq \\ \leq \ln^{+} \ln^{+} S_{f}(R) + 2\ln 2 + \ln^{+} |a| + \ln^{+} \frac{1}{|c_{f}(a)|} + n_{f}(0, a) \ln^{+} \frac{1}{R}.$$
(19)

Then inequality (15) is an obvious consequence from inequalities (16), (17), and (19). \Box

Let $\mathcal{R} \in (0, +\infty]$, $r \in (0, \mathcal{R})$, and let g be a function analytic in the disk $\mathcal{D}(\mathcal{R})$. We set

$$\mathcal{E}_g(r) = \{ \theta \in \mathbb{R} \colon g(te^{i\theta}) \neq 0 \text{ for all } t \in (0,r] \}.$$

Note, that $\mathcal{E}_g(r_2) \subset \mathcal{E}_g(r_1)$ if $0 < r_1 < r_2 < \mathcal{R}$. The set $\mathcal{E}_g(r)$ is periodic in the sense that $\theta \in \mathcal{E}_g(r)$ if and only if $(\theta + 2\pi) \in \mathcal{E}_g(r)$. In addition, $[0, 2\pi) \setminus \mathcal{E}_g(r)$ is a finite set for all $r \in (0, \mathcal{R})$.

Suppose that g(0) = 1, and fix an arbitrary $\theta \in \mathcal{E}_g(r)$. Then $g(te^{i\theta}) \neq 0$ for each $t \in [0, r]$. In view of this, by $v_g(t, \theta)$ we denote the continuous branch of the argument of the function $g(te^{i\theta})$ such that $v_g(0, \theta) = 0$, and put

$$V_g(r,\theta) = \frac{1}{2\pi} \int_0^r v_g(t,\theta) \frac{dt}{t}.$$

The following statement is well known (see [8], [6], and [28], p. 126).

Lemma C. Let $\mathcal{R} \in (0, +\infty]$, $r \in (0, \mathcal{R})$, and let g be a function analytic in the disk $\mathcal{D}(\mathcal{R})$ such that g(0) = 1. Then:

(i) for all $\alpha, \beta \in \mathcal{E}_g(r)$ such that $\alpha < \beta \leq \alpha + 2\pi$ we have

$$N_g(r,\alpha,\beta,0) = \frac{1}{2\pi} \int_{\alpha}^{\beta} \ln|g(re^{i\theta})|d\theta + V_g(r,\alpha) - V_g(r,\beta);$$

(ii) for all $\alpha, \beta \in \mathbb{R}$ such that $\alpha < \beta \leq \alpha + 2\pi$ we have

$$\int_{\alpha}^{\beta} V_g(r,\theta) d\theta = \frac{1}{2\pi} \int_0^r (\ln|g(te^{i\alpha})| - \ln|g(te^{i\beta})|) \ln \frac{r}{t} \frac{dt}{t}$$

Let g be a function analytic in the disk $\mathcal{D}(\mathcal{R})$ such that g(0) = 1. Consider an arbitrary interval $(\varphi, \psi) \subset \mathcal{E}_g(r)$, fix some point α in this interval, and let $\beta \neq \alpha$ be an arbitrary point of this interval. Then the function g has no zeros in the sector $\mathcal{S}(r, \min\{\alpha, \beta\}, \max\{\alpha, \beta\})$. Therefore, $N_g(r, \min\{\alpha, \beta\}, \max\{\alpha, \beta\}, 0) = 0$. According to (i) of Lemma C we have

$$V_g(r,\beta) = V_g(r,\alpha) + \frac{1}{2\pi} \int_{\alpha}^{\beta} \ln|g(re^{i\theta})|d\theta.$$

Since for a fixed α the function $y(\beta) = \int_{\alpha}^{\beta} \ln |g(re^{i\theta})| d\theta$ is continuous and bounded on every finite interval of the real axis, then $V_g(r,\beta)$, as a function of β , is continuous and bounded on the interval (φ, ψ) . From the above considerations, as well as from the periodicity of the set $\mathcal{E}_g(r)$ and the finiteness of the set $[0, 2\pi) \setminus \mathcal{E}_g(r)$, we obtain that the function $V_g(r, \beta)$ is continuous and bounded on $\mathcal{E}_g(r)$.

Now let f be an arbitrary function analytic in the disk $\mathcal{D}(\mathcal{R})$. Put

$$g(z) = \frac{f(z)}{c_f(0)z^{n_f(0,0)}}.$$

Then g(0) = 1, $\mathcal{E}_f(r) = \mathcal{E}_g(r)$, and $\tilde{n}_f(r, \alpha, \beta, 0) = \tilde{n}_g(r, \alpha, \beta, 0)$. Therefore, setting $V_f(r, \theta) = V_g(r, \theta)$ for all $\theta \in \mathcal{E}_f(r)$, from Lemma C, as a consequence, we obtain the following statement.

Lemma D. Let $\mathcal{R} \in (0, +\infty]$, $r \in (0, \mathcal{R})$, and let f be a function analytic in the disk $\mathcal{D}(\mathcal{R})$. Then there exists a function $V_f(r, \theta)$ continuous and bounded on $\mathcal{E}_f(r)$ such that: (i) for all $\alpha, \beta \in \mathcal{E}_f(r)$ such that $\alpha < \beta \leq \alpha + 2\pi$ we have

$$N_f(r,\alpha,\beta,0) = \frac{1}{2\pi} \int_{\alpha}^{\beta} \ln|f(re^{i\theta})|d\theta - \frac{\beta - \alpha}{2\pi} \ln|c_f(0)| + V_f(r,\alpha) - V_f(r,\beta);$$

(ii) for all $\alpha, \beta \in \mathbb{R}$ such that $\alpha < \beta \leq \alpha + 2\pi$ we have

$$\int_{\alpha}^{\beta} V_f(r,\theta) d\theta = \frac{1}{2\pi} \int_0^r (\ln|f(te^{i\alpha})| - \ln|f(te^{i\beta})|) \ln \frac{r}{t} \frac{dt}{t}.$$

Note that the equality from assertion (i) of Lemma D is a generalization of the following classical Jensen equality

$$N_f(r,0) = \frac{1}{2\pi} \int_0^{2\pi} \ln|f(re^{i\theta})|d\theta - \ln|c_f(0)| \quad (r \in (0,\mathcal{R})).$$
(20)

Also note that equality (20) implies the inequality

$$N_f(r,0) \le T_f(r) - \ln |c_f(0)| \quad (r \in (0,\mathcal{R})).$$
 (21)

In fact, the following statement [29] is an immediate consequence of the classical Borel-Nevanlinna lemma (see [2], p. 90).

Lemma E. Let u(r) be a nondecreasing function unbounded on $[r_0, +\infty)$, $x_0 = u(r_0)$, and let $\varphi(x)$ be a continuous positive function increasing to $+\infty$ on $[x_0, +\infty)$ such that $\int_{x_0}^{+\infty} \frac{dx}{\varphi(x)} < +\infty$. Then for all $r \ge r_0$ outside a set E of finite logarithmic measure on $(0, +\infty)$ we have

$$u\left(r\exp\left\{\frac{1}{\varphi(\ln u(r))}\right\}\right) < eu(r).$$

Lemma 3. Let $0 \le r_0 < \mathcal{R} < +\infty$, u(r) be a nondecreasing function unbounded on $[r_0, \mathcal{R})$, $x_0 = u(r_0)$, and let $\varphi(x)$ be a continuous positive function increasing to $+\infty$ on $[x_0, +\infty)$ such that $\int_{x_0}^{+\infty} \frac{dx}{\varphi(x)} < +\infty$. Then for all $r \in [r_0, \mathcal{R})$ outside a set E of finite logarithmic measure on $(0, \mathcal{R})$ we have

$$u\left(\mathcal{R} - (\mathcal{R} - r)\exp\left\{-\frac{1}{\varphi(\ln u(r))}\right\}\right) < eu(r).$$

Proof. It suffices to show that the set

$$F = \left\{ r \in [r_0, \mathcal{R}) \colon u\left(\mathcal{R} - (\mathcal{R} - r) \exp\left\{-\frac{1}{\varphi(\ln u(r))}\right\}\right) \ge eu(r) \right\}$$

has finite logarithmic measure on $(0, \mathcal{R})$.

Put

$$r' = \frac{\mathcal{R}}{\mathcal{R} - r}, \quad r'_0 = \frac{\mathcal{R}}{\mathcal{R} - r_0}, \quad v(r') = u\left(\mathcal{R}\frac{r' - 1}{r'}\right).$$

Then $r = \mathcal{R}\left(1 - \frac{1}{r'}\right)$. It is easy to verify that the set F is the image of the set

$$F' = \left\{ r' \ge r'_0 \colon v\left(r' \exp\left\{\frac{1}{\varphi(\ln v(r'))}\right\}\right) \ge ev(r') \right\}$$

under the mapping $r = \mathcal{R}\left(1 - \frac{1}{r'}\right)$. By Lemma E, the set F' has finite logarithmic measure on $(0, +\infty)$. Therefore,

$$\int_{F} \frac{dr}{\mathcal{R} - r} = \int_{F'} \frac{r'}{\mathcal{R}} d\mathcal{R} \left(1 - \frac{1}{r'} \right) = \int_{F'} \frac{dr'}{r'} < +\infty,$$

i. e. the set F has finite logarithmic measure on $(0, \mathcal{R})$.

3. Proofs of theorems and corollaries.

Proof of Theorem 1. Let $\mathcal{R} \in (0, +\infty]$, $f \in \mathcal{H}(\mathcal{R})$ be an analytic function of form (1), and $m = \min\{n \in \mathbb{N}: c_n \neq 0\}$. Fix an arbitrary $r_0 \in (0, \mathcal{R})$ such that $S_{f^*}(r) \geq S_f(r) \geq e$ $(r \geq r_0)$, and for each $x \in [0, +\infty)$ put

$$h_0(x) = m \ln^+ \frac{1}{r_0} + \ln^+ m + \ln^+ x + 7, \quad h(x) = h_0(x) + \ln^+ \max\{|c_0| + x, |c_m|\} + \ln^+ \frac{1}{m|c_m|}.$$

It is clear that $h \in L$.

Consider the random analytic function defined by (2). Then, as easily seen, for all $\omega \in \Omega$ and each $a \in \mathbb{C}$ the relations

$$|c_{f_{\omega}^{*}}(0)| = m|c_{m}|, \quad |c_{f_{\omega}}(a)| \le \max\{|c_{0}| + |a|, |c_{m}|\}, \quad |n_{f_{\omega}}(0, a)| \le m$$

are true.

Let C_0 be the constant from Theorem A, and A is the following event: there exists $r_0(\omega) \in (0, \mathcal{R})$ such that

$$\ln S_{f^*}(r) \le N_{f^*_{\omega}}(r,0) + (C_0 + 1) \ln \ln S_{f^*}(r) \quad (r_0(\omega) \le r < \mathcal{R}).$$
(22)

By Theorem A we have P(A) = 1. Furthermore, since $S_{f^*}(r) \ge S_f(r)$ $(r \ge r_0)$ and the function $y(x) = x - (C_0 + 1) \ln x$ is increasing on $[x_0, +\infty)$, for every $\omega \in A$ satisfying (22) we obtain

$$\ln S_f(r) \le N_{f_{\omega}^*}(r,0) + (C_0 + 1) \ln \ln S_f(r) \quad (r_1(\omega) \le r < \mathcal{R}),$$
(23)

where $r_1(\omega) \ge r_0$.

Fix an arbitrary $\omega \in \Omega$. Using Jensen's formula (20), written for the functions f_{ω}^* and $f_{\omega} - a$, and Lemma 2 for the function f_{ω} instead of f, for each $a \in \mathbb{C}$ and all $r, R \in [r_0, \mathcal{R})$, r < R, we have

$$N_{f_{\omega}^{*}}(r,0) - N_{f_{\omega}}(r,a) = \frac{1}{2\pi} \int_{0}^{2\pi} \ln \left| \frac{f_{\omega}^{*}(re^{i\theta})}{f_{\omega}(re^{i\theta}) - a} \right| d\theta - \ln \frac{|c_{f_{\omega}^{*}}(0)|}{|c_{f_{\omega}}(a)|} \le \\ \le m_{\frac{f_{\omega}^{*}}{f_{\omega} - a}}(r) - \ln \frac{|c_{f_{\omega}^{*}}(0)|}{|c_{f_{\omega}}(a)|} \le \ln \ln S_{f}(R) + \ln \frac{R}{R - r} + \ln^{+} \frac{1}{|c_{f_{\omega}}(a)|} + h_{0}(|a|) - \ln \frac{|c_{f_{\omega}^{*}}(0)|}{|c_{f_{\omega}}(a)|} = \\ = \ln \ln S_{f}(R) + \ln \frac{R}{R - r} + h_{0}(|a|) + \ln^{+} |c_{f_{\omega}}(a)| - \ln |c_{f_{\omega}^{*}}(0)| \le \\ \le \ln \ln S_{f}(R) + \ln \frac{R}{R - r} + h(|a|).$$

From this and from (23) for arbitrary $\omega \in A$ and $a \in \mathbb{C}$ we obtain

$$\ln S_f(r) \le N_{f_{\omega}}(r,a) + (C_0 + 2) \ln \ln S_f(R) + \ln \frac{R}{R-r} + h(|a|) \quad (r_1(\omega) \le r < R < \mathcal{R}).$$

Theorem 2 is obtained from Theorem 1 and the following statement.

Theorem 3. Let $\mathcal{R} \in (0, +\infty]$, $g \in \mathcal{H}(\mathcal{R})$, and let $r_0 \in (0, \mathcal{R})$ be an arbitrary fixed number such that $S_g(r_0) \geq 1$, and

$$h_g(r) = \int_{r_0}^r \left(\ln S_g(t) - N_g(t,0) - \ln |c_g(0)| + \frac{1}{e} \right) \ln \frac{r}{t} \frac{dt}{t} \quad (r_0 < r < \mathcal{R}).$$
(24)

Then there exists a constant $C_7 > 0$ such that for all $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, we have

$$N_g(r, \alpha, \beta, 0) \le \frac{\beta - \alpha}{2\pi} \ln S_g(r) + 3\sqrt[3]{\frac{3}{\pi^2} \ln^2 S_g(r) h_g(r)} + C_7 \quad (r_0 < r < \mathcal{R}).$$
(25)

Proof. Let $C_7 = \frac{1}{e} + 2C_8 + 2|\ln|c_g(0)||$, where C_8 is a constant such that $|V_g(r_0, \theta)| \leq C_8$ for every $\theta \in \mathcal{E}_g(r_0)$ (see Lemma D).

Fix arbitrary $r > r_0$ and $\alpha, \beta \in \mathbb{R}$ such that $\alpha < \beta \leq \alpha + 2\pi$. If $8h_g(r) \geq \ln S_g(r)$, then inequality (25) holds. Indeed, using inequalities (21) and (18) with the function g instead of f, we have

$$N_g(r, \alpha, \beta, 0) \le N_g(r, 0) \le \frac{\beta - \alpha}{2\pi} \ln S_g(r) + N_g(r, 0) \le \frac{\beta - \alpha}{2\pi} \ln S_g(r) + \ln S_g(r) + \frac{1}{2e} - \ln |c_g(0)| \le \frac{\beta - \alpha}{2\pi} \ln S_g(r) + 2\sqrt[3]{\ln^2 S_g(r)h_g(r)} + C_7.$$

Now let $8h_g(r) < \ln S_g(r)$ and

$$\varepsilon = \sqrt[3]{\frac{8\pi}{9} \frac{h_g(r)}{\ln S_g(r)}}.$$

Inequalities (21) and (18) imply that $\ln S_g(t) - N_g(t,0) - \ln |c_g(0)| + \frac{1}{e} \ge \frac{1}{2e}$ for all $t \in (r_0, r)$. Thus, $h_g(r) > 0$. Moreover, $\ln S_g(r) > 0$. Therefore, $\varepsilon > 0$. On the other hand,

$$\varepsilon < \sqrt[3]{\frac{8\pi}{9}\frac{1}{8}} < \frac{\pi}{4}$$

Put

$$\varphi(\theta) = \frac{1}{2\pi} \int_{r_0}^r \ln|g(te^{i\theta})| \ln \frac{r}{t} \frac{dt}{t}.$$

Then, applying Lemma 1 to the function g, we obtain

$$I_1 := \int_{\alpha - 3\varepsilon}^{\alpha - 2\varepsilon} \varphi(\theta) d\theta = \int_{r_0}^r \left(\frac{1}{2\pi} \int_{\alpha - 3\varepsilon}^{\alpha - 2\varepsilon} \ln|g(te^{i\theta})| d\theta \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t} \le \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t}$$

From this and from the mean value theorem, applied to the integral I_1 , it follows the existence of a number $\zeta_1 \in [\alpha - 3\varepsilon, \alpha - 2\varepsilon]$ such that

$$\varphi(\zeta_1) \le \frac{1}{\varepsilon} \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t}.$$
(26)

Since for any $x, y \in \mathbb{R}$ the Jensen formula implies the equality

$$\frac{1}{2\pi} \int_{x}^{y} \ln|g(re^{i\theta})|d\theta = N_{g}(r,0) + \ln|c_{g}(0)| - \frac{1}{2\pi} \int_{y}^{x+2\pi} \ln|g(re^{i\theta})|d\theta, \quad x, y \in \mathbb{R},$$

using Lemma 1, in the case $x < y \le x + 2\pi$ we have

$$\frac{1}{2\pi} \int_{x}^{y} \ln|g(re^{i\theta})|d\theta \ge N_g(r,0) + \ln|c_g(0)| - \frac{1}{2e} - \frac{x + 2\pi - y}{2\pi} \ln S_g(r)$$

Then

$$I_{2} := \int_{\alpha-\varepsilon}^{\alpha} \varphi(\theta) d\theta = \int_{r_{0}}^{r} \left(\frac{1}{2\pi} \int_{\alpha-\varepsilon}^{\alpha} \ln|g(te^{i\theta})| d\theta \right) \ln \frac{r}{t} \frac{dt}{t} \ge$$
$$\geq \int_{r_{0}}^{r} \left(N_{g}(t,0) + \ln|c_{g}(0)| - \frac{1}{2e} - \frac{2\pi-\varepsilon}{2\pi} \ln S_{g}(t) \right) \ln \frac{r}{t} \frac{dt}{t}$$

Therefore, the mean value theorem applied to the integral I_2 , yields the existence of a number $\zeta_2 \in [\alpha - \varepsilon, \alpha]$ such that

$$\varphi(\zeta_2) \ge \frac{1}{\varepsilon} \int_{r_0}^r \left(N_g(t,0) + \ln|c_g(0)| - \frac{1}{2e} - \frac{2\pi - \varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t}.$$
 (27)

Then, using Lemma D and inequalities (26) and (27), we obtain

$$I_{3} := \int_{\zeta_{1}}^{\zeta_{2}} \left(V_{g}(r,\theta) - V_{g}(r_{0},\theta) \right) d\theta = \frac{1}{2\pi} \int_{r_{0}}^{r} \left(\ln |g(te^{i\zeta_{1}})| - \ln |g(te^{i\zeta_{2}})| \right) \ln \frac{r}{t} \frac{dt}{t} = \\ = \varphi(\zeta_{1}) - \varphi(\zeta_{2}) \le \frac{1}{\varepsilon} \int_{r_{0}}^{r} \left(\ln S_{g}(t) - N_{g}(t,0) - \ln |c_{g}(0)| + \frac{1}{e} \right) \ln \frac{r}{t} \frac{dt}{t} = \frac{1}{\varepsilon} h_{g}(r).$$

From the inequality $\zeta_2 - \zeta_1 \geq \varepsilon$ and from the mean value theorem, applied to the integral I_3 , it follows the existence of a number $\zeta \in [\zeta_1, \zeta_2] \cap \mathcal{E}_g(r)$ such that

$$V_g(r,\zeta) - V_g(r_0,\zeta) \le \frac{1}{\varepsilon^2} h_g(r).$$
(28)

Similarly we can prove that there exist numbers $\eta_1 \in [\beta, \beta + \varepsilon]$ and $\eta_2 \in [\beta + 2\varepsilon, \beta + 3\varepsilon]$ such that

$$\varphi(\eta_1) \ge \frac{1}{\varepsilon} \int_{r_0}^r \left(N_g(t,0) + \ln |c_g(0)| - \frac{1}{2e} - \frac{2\pi - \varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t},$$
$$\varphi(\eta_2) \le \frac{1}{\varepsilon} \int_{r_0}^r \left(\frac{1}{2e} + \frac{\varepsilon}{2\pi} \ln S_g(t) \right) \ln \frac{r}{t} \frac{dt}{t}.$$

Then

$$I_4 := \int_{\eta_1}^{\eta_2} \left(V_g(r,\theta) - V_g(r_0,\theta) \right) d\theta = \varphi(\eta_1) - \varphi(\eta_2) \ge -\frac{1}{\varepsilon} h_g(r).$$

The inequality $\eta_2 - \eta_1 \leq 3\varepsilon$ together with the mean value theorem applied to the integral I_4 implies the existence of a number $\eta \in [\eta_1, \eta_2] \cap \mathcal{E}_g(r)$ such that

$$V_g(r,\eta) - V_g(r_0,\eta) \ge -\frac{1}{3\varepsilon^2} h_g(r).$$
 (29)

Using Lemmas D and 1, as well as inequalities (28) and (29), and taking into account that $\eta - \zeta \leq \beta - \alpha + 6\varepsilon < 4\pi$, we obtain

$$N_{g}(r,\alpha,\beta,0) \leq N_{g}(r,\zeta,\eta,0) = \frac{1}{2\pi} \int_{\zeta}^{\eta} \ln|g(re^{i\theta})|d\theta - \frac{\eta-\zeta}{2\pi} \ln|c_{g}(0)| + V_{g}(r,\zeta) - V_{g}(r,\eta) \leq \\ \leq \frac{\eta-\zeta}{2\pi} \ln S_{g}(r) + \frac{1}{e} - \frac{\eta-\zeta}{2\pi} \ln|c_{g}(0)| + V_{g}(r,\zeta) - V_{g}(r,\eta) \leq \\ \leq \frac{\beta-\alpha+6\varepsilon}{2\pi} \ln S_{g}(r) + \frac{1}{e} + 2|\ln|c_{g}(0)|| + \frac{1}{\varepsilon^{2}}h_{g}(r) + C_{8} + \frac{1}{3\varepsilon^{2}}h_{g}(r) + C_{8} = \\ = \frac{\beta-\alpha}{2\pi} \ln S_{g}(r) + 3\sqrt[3]{\frac{3}{\pi^{2}}} \ln^{2}S_{g}(r)h_{g}(r) + C_{7}.$$

Proof of Theorem 2. Let $f \in \mathcal{H}(\mathcal{R})$ be an analytic function of form (1), and let $r_0 \in (0, \mathcal{R})$ be an arbitrary fixed number such that $S_f(r_0) \geq \max\{e, \sqrt{1+|c_0|^2}\}$.

Consider the random analytic function defined by (2). For arbitrary $\omega \in \Omega$, $a \in \mathbb{C}$, and $r \in (0, \mathcal{R})$ we have $S^2_{f_\omega - a}(r) = |c_0 e^{2\pi i \omega_0(\omega)} - a|^2 + S^2_f(r) - |c_0|^2$. This implies the inequalities

$$S_f^2(r) - |c_0|^2 \le S_{f_\omega - a}^2(r) \le S_f^2(r) + (|c_0| + |a|)^2.$$

Then $S_{f_{\omega}-a}^2(r) \ge 1$ by the first of these inequalities. By the second of these inequalities, there exists a constant $C_9 = C_9(a) > 0$ such that

$$\ln S_{f_{\omega}-a}(r) \le \ln S_f(r) + C_9 \quad (r_0 < r < \mathcal{R}).$$

$$(30)$$

Let $C_1 > 0$ is the absolute constant and $h \in L$ is the function, the existence of which follows from Theorem 1. Let B be the next event: for every $a \in \mathbb{C}$ inequality (5) holds. Then, by Theorem 1, P(B) = 1.

Fix arbitrary $\omega \in B$ and $a \in \mathbb{C}$, and let $g(z) = f_{\omega}(z) - a$. Then (5) and (30) implies the existence of a constant $C_{10} = C_{10}(\omega, a) > 0$ such that

$$\ln S_g(r) - N_g(r,0) - \ln |c_g(0)| + \frac{1}{e} \le C_1(l_f(r) + C_{10}) \quad (r_0 < r < \mathcal{R}).$$

So, if h_g is the function defined by the equality (24), then

$$h_g(r) \le C_1 \int_{r_0}^r (l_f(t) + C_{10}) \ln \frac{r}{t} \frac{dt}{t} \quad (r_0 < r < \mathcal{R}).$$
 (31)

By Theorem 3, there exists a constant $C_7 = C_7(\omega, a) > 0$ such that for arbitrary $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta \leq \alpha + 2\pi$, inequality (25) holds. Using this inequality and also inequalities (30) and (31), for arbitrary $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta \leq \alpha + 2\pi$, and all $r \in (r_0, \mathcal{R})$ we obtain

$$N_{f_{\omega}}(r,\alpha,\beta,a) = N_g(r,\alpha,\beta,0) \le \frac{\beta-\alpha}{2\pi} \ln S_g(r) + 3\sqrt[3]{\frac{3}{\pi^2} \ln^2 S_g(r) h_g(r)} + C_7 \le \\ \le \frac{\beta-\alpha}{2\pi} \ln S_f(r) + C_9 + 3\left(\frac{3}{\pi^2} C_1 \ln^2 (S_f(r) + C_9) \int_{r_0}^r (l_f(t) + C_{10}) \ln \frac{r}{t} \frac{dt}{t}\right)^{\frac{1}{3}} + C_7.$$

Finally, putting $C(\omega, a) = \max\{C_9(a) + C_7(\omega, a), C_{10}(\omega, a)\}$ and $C_2 = 3\sqrt[3]{\frac{3C_1}{\pi^2}}$, we complete the proof of Theorem 2.

Proof of Corollary 1. Let f be an entire function of form (1), $r_0 = \min\{r \ge 0 : \ln S_f(r) \ge e\}$, and $x_0 = \ln S_f(r_0)$. Put

$$R(r) = r \exp\left\{\frac{1}{\ln^2 \ln S_f(r)}\right\} \quad (r \ge r_0).$$

Applying Lemma E to the functions $u(r) = \ln S_f(r)$ $(r \ge r_0)$ and $\varphi(x) = x^2$ $(x \ge x_0)$, we have

$$\ln S_f(R(r)) < e \ln S_f(r) \quad (r \ge r_0, \ r \notin E_3), \tag{32}$$

where E_3 is a set of finite logarithmic measure on $(0, +\infty)$. Furthermore, obviously,

$$\frac{R(r)}{R(r) - r} \sim \ln^2 \ln S_f(r) \quad (r \to +\infty).$$
(33)

Let $C_3 = C_1 + 1$, where C_1 is the constant from Theorem 1. Using this theorem with R = R(r) and taking into account (32) and (33), we see that for the random entire function defined by (2) a. s. for each $a \in \mathbb{C}$ the inequality (6) holds.

Proof of Corollary 2. Let f be an entire function of form (1), for which condition (7) holds, and let $r_0 \in (0, +\infty)$ be a fixed number such that $S_f(r_0) \ge \max\{e, \sqrt{1+|c_0|^2}\}$. Put

$$y(r) = \frac{\ln S_f(r)}{\ln^2 r \ln \ln S_f(r)} \quad (r > r_0).$$
(34)

Then, obviously, condition (7) is equivalent to the condition

$$\lim_{r \to +\infty} y(r) = +\infty.$$
(35)

First we prove that (35) implies the existence of a set E of upper density 1 on $(0, +\infty)$ such that

$$\lim_{E \ni r \to +\infty} y(r) = +\infty.$$
(36)

There is nothing to prove if the limit $\lambda := \underline{\lim}_{r \to +\infty} y(r)$ is equal to $+\infty$. Let $\lambda < +\infty$, and let (λ_n) be an arbitrary sequence from the interval $(\lambda, +\infty)$ increasing to $+\infty$. Taking into account that the function y(r) is continuous on $(r_0, +\infty)$ and using (35), it is easy to justify the existence of sequences (s_n) and (t_n) increasing to $+\infty$ such that $r_0 < s_0 < t_0 <$ $s_1 < t_1 < \ldots, y(s_n) = 4\lambda_n, y(t_n) = \lambda_n$, and $\lambda_n \leq y(r) \leq 4\lambda_n$ for $r \in [s_n, t_n]$ and all $n \geq 0$. Put $E = \bigcup_{n=0}^{\infty} [s_n, t_n]$. Then obviously (36) holds. We show that E is a set of upper density 1 on $(0, +\infty)$. Indeed, since the function

$$h(r) = \frac{\ln S_f(r)}{\ln \ln S_f(r)}$$

is increasing on $(r_1, +\infty)$, we have that

$$\ln^{2} t_{n} - \ln^{2} s_{n} = \frac{h(t_{n})}{\lambda_{n}} - \frac{h(s_{n})}{4\lambda_{n}} > \frac{3h(s_{n})}{4\lambda_{n}} = 3\ln^{2} s_{n} \quad (n \ge n_{0}).$$

This implies that $s_n < \sqrt{t_n}$ $(n \ge n_0)$. Therefore,

$$\overline{\lim_{r \to +\infty}} \int_{E \cap (0,r)} \frac{dt}{r} \ge \overline{\lim_{n \to \infty}} \int_{E \cap (s_n, t_n)} \frac{dt}{t_n} = \overline{\lim_{n \to \infty}} \frac{t_n - s_n}{t_n} = 1,$$
(37)

i. e. the set E has upper density 1 on $(0, +\infty)$.

Consider the function l_f , introduced in Theorem 2. It is clear that this function is increasing on $(r_0, +\infty)$, and therefore, by Theorem 2, for the random entire function defined by (2) a. s. for each $a \in \mathbb{C}$ and arbitrary $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, we obtain

$$N_{f_{\omega}}(r,\alpha,\beta,a) \le \frac{\beta - \alpha}{2\pi} \ln S_f(r) + C_2 \sqrt[3]{\ln^2 S_f(r) l_f(r) \ln^2 r} \quad (r \ge r_4(\omega,a)).$$
(38)

Let E_3 be a set of finite logarithmic measure on $(0, +\infty)$ for which (32) holds. Then $l_f(r) \leq 2 \ln \ln S_f(r)$ for all $r \geq r_2$, $r \notin E_3$, and from (38) we have

$$N_{f_{\omega}}(r,\alpha,\beta,a) \leq \frac{\beta - \alpha}{2\pi} \ln S_f(r) + C_2 \sqrt[3]{2 \ln^2 S_f(r) \ln \ln S_f(r) \ln^2 r} = \\ = \ln S_f(r) \left(\frac{\beta - \alpha}{2\pi} + C_2 \sqrt[3]{\frac{2}{y(r)}} \right) \quad (r \geq r_5(\omega,a), \ r \notin E_3).$$
(39)

Put $E_4 = E \setminus E_3$. It is clear that the set E_4 has upper density 1 on $(0, +\infty)$. Using (39) and (36), a. s. for each $a \in \mathbb{C}$ and arbitrary $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, we obtain

$$\overline{\lim}_{E_4 \ni r \to +\infty} \frac{N_{f_\omega}(r, \alpha, \beta, a)}{\ln S_f(r)} \le \frac{\beta - \alpha}{2\pi}.$$
(40)

Then, obviously, the validity of relation (4) as $E_4 \ni r \to +\infty$ follows from the equality

$$N_{f_{\omega}}(r,\alpha,\beta,a) + N_{f_{\omega}}(r,\beta,\alpha+2\pi,a) = N_{f_{\omega}}(r,a),$$
(41)

inequality (6) and inequality (40), applied to the angles β and $\alpha + 2\pi$ instead of the angles α and β , respectively.

Proof of Corollary 3. Let $\rho \in (0, +\infty)$, and f be an entire function of the order $\rho_f \geq \rho$ and form (1). It is well known that in the definition of ρ_f the characteristic $M_f(r)$ can be replaced with the characteristic $S_f(r)$, i. e.

$$\overline{\lim_{r \to +\infty}} \frac{\ln \ln S_f(r)}{\ln r} = \rho_f \ge \rho.$$

We consider the set $E = \{r > r_0 \colon \ln \ln S_f(r) > \frac{\rho}{2} \ln r\}$ and prove that its upper density on $(0, +\infty)$ is equal to 1. There is nothing to prove if there exists $r_1 > 0$ such that $\ln \ln S_f(r) > \frac{\rho}{2} \ln r$ $(r \ge r_1)$. Otherwise, E, as an open set, we can represent in the form of a countable union of intervals. From this union one can choose a sequence of intervals $((s_n, t_n))$ such that for every $n \ge 0$ we have $s_n < t_n < s_{n+1}$, $\ln \ln S_f(s_n) = \frac{\rho}{2} \ln s_n$, $\ln \ln S_f(t_n) = \frac{\rho}{2} \ln t_n$, and there exists $x_n \in (s_n, t_n)$ such that $\ln \ln S_f(x_n) = \frac{2\rho}{3} \ln x_n$. Then

$$\ln t_n = \frac{2}{\rho} \ln \ln S_f(t_n) > \frac{2}{\rho} \ln \ln S_f(x_n) = \frac{4}{3} \ln x_n,$$

from which we obtain the relation $s_n = o(t_n), n \to +\infty$. This relation implies (43), i. e. the set *E* has upper density 1 on $(0, +\infty)$.

Put $E_5 = E \setminus E_3$, where E_3 is a set of finite logarithmic measure on $(0, +\infty)$ for which (32) is satisfied. The set E_5 has upper density 1 on $(0, +\infty)$ and, according to (39), for the random

entire function defined by (2) a. s. for each $a \in \mathbb{C}$ and arbitrary $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, we have

$$N_{f_{\omega}}(r,\alpha,\beta,a) \leq \frac{\beta-\alpha}{2\pi} \ln S_{f}(r) + C_{2}\sqrt[3]{2\ln^{2}S_{f}(r)\ln\ln S_{f}(r)} + \frac{4}{\rho^{2}}\ln^{2}\ln S_{f}(r)} \leq \frac{\beta-\alpha}{2\pi} \ln S_{f}(r) + \frac{2C_{2}}{\sqrt[3]{\rho^{2}}}\ln^{\frac{2}{3}}S_{f}(r)\ln\ln S_{f}(r) \quad (r \geq r_{5}(\omega,a), \ r \in E_{5}).$$

Finally, using equality (41) and inequality (6), and putting $C_4 = 2C_2$, we complete the proof of Corollary 3.

Proof of Corollary 4. Let f be an entire function of finite order and form (1). Corollary 4 is obvious if f is a polynomial.

Let the function f be transcendental. Then $\ln r = o(\ln S_f(r))$ $(r \to +\infty)$. In addition, $\ln \ln S_f(r) \leq 2\rho \ln r$ $(r \geq r_6)$. Therefore, using Theorem 1, for the random entire function defined by (2) a. s. for each $a \in \mathbb{C}$ we obtain

$$\ln S_f(r) \le N_{f_{\omega}}(r, a) + C_1 \ln \ln S_f(2r) + \ln 2 + h(|a|) \quad (r \ge r_1(\omega))$$

This implies that

$$\lim_{r \to +\infty} \frac{\ln S_f(r)}{N_{f_\omega}(r, a)} \le 1.$$

On the other hand, using (21) with $f_{\omega} - a$ instead of f and (18) with f_{ω} instead of f, for arbitrary $\omega \in \Omega$ and $a \in \mathbb{C}$ we have

$$N_{f_{\omega}}(r,a) \le \ln S_f(r) + \frac{1}{2e} + \ln^+ |a| + \ln 2 - \ln |c_{f_{\omega}}(a)|.$$

From this it follows that

$$\lim_{r \to +\infty} \frac{\ln S_f(r)}{N_{f_\omega}(r, a)} \ge 1.$$

Therefore, a. s. for every $a \in \mathbb{C}$ relation (9) holds.

Proof of Corollary 5. Let f be an entire function of finite order ρ and form (1) such that relation (10) holds. For the function l_f , introduced in Theorem 2, we have $l_f(r) \leq 2\rho \ln r$ $(r \geq r_7)$. Therefore, using (38), for the random entire function defined by (2) a. s. for each $a \in \mathbb{C}$ and arbitrary $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, we obtain

$$N_{f_{\omega}}(r,\alpha,\beta,a) \le \frac{\beta-\alpha}{2\pi} \ln S_f(r) + C_2 \ln r \sqrt[3]{2\rho \ln^2 S_f(r)} \quad (r \ge r_6(\omega,a)).$$

This together with (10) implies that

$$\overline{\lim_{r \to +\infty}} \frac{N_{f_{\omega}}(r, \alpha, \beta, a)}{\ln S_f(r)} \le \frac{\beta - \alpha}{2\pi}.$$

Using equality (41) and Corollary 4, we complete the proof of Corollary 5.

Proof of Corollary 6. Let $\mathcal{R} \in (0, +\infty)$, and let $f \in \mathcal{H}(\mathcal{R})$ be an analytic function of form (1) such that relation (11) holds. Put $y(r) = \ln S_f(r) / \ln \frac{1}{\mathcal{R} - r}$ $(r \in (0, \mathcal{R}))$ and prove that (11) implies the existence of a set E of upper density 1 on $(0, \mathcal{R})$ such that

$$\lim_{E \ni r \to +\infty} y(r) = +\infty.$$
(42)

Then, obviously, (36) holds. We show that E is a set of upper density 1 on $(0, +\infty)$. Indeed, since the function

$$h(r) = \frac{\ln S_f(r)}{\ln \ln S_f(r)}$$

is increasing on $(r_1, +\infty)$, one has that

$$\ln^{2} t_{n} - \ln^{2} s_{n} = \frac{h(t_{n})}{\lambda_{n}} - \frac{h(s_{n})}{4\lambda_{n}} > \frac{3h(s_{n})}{4\lambda_{n}} = 3\ln^{2} s_{n} \quad (n \ge n_{0}).$$

This implies that $s_n < \sqrt{t_n}$ $(n \ge n_0)$. Therefore,

$$\overline{\lim_{r \to +\infty}} \int_{E \cap (0,r)} \frac{dt}{r} \ge \overline{\lim_{n \to \infty}} \int_{E \cap (s_n, t_n)} \frac{dt}{t_n} = \overline{\lim_{n \to \infty}} \frac{t_n - s_n}{t_n} = 1,$$
(43)

i. e. the set E has upper density 1 on $(0, +\infty)$.

There is nothing to prove if the limit $\lambda := \underline{\lim}_{r \to +\infty} y(r)$ is equal to $+\infty$. Let $\lambda < +\infty$, and (λ_n) be an arbitrary sequence from the interval $(\lambda, +\infty)$ increasing to $+\infty$. Taking into account that the function y(r) is continuous on $(0, \mathcal{R})$, and using (11), it is easy to justify the existence of sequences (s_n) and (t_n) increasing to \mathcal{R} such that $0 < s_0 < t_0 < s_1 < t_1 <$ $\ldots, y(s_n) = 2\lambda_n, y(t_n) = \lambda_n$, and $\lambda_n \leq y(r) \leq 2\lambda_n$ for $r \in [s_n, t_n]$ and all $n \geq 0$. Put $E = \bigcup_{n=0}^{\infty} [s_n, t_n]$. Then, obviously, (42) holds. In addition,

$$\ln \frac{1}{\mathcal{R} - t_n} = \frac{\ln S_f(t_n)}{\lambda_n} > \frac{\ln S_f(s_n)}{\lambda_n} = 2\ln \frac{1}{\mathcal{R} - s_n}$$

This implies that $\mathcal{R} - t_n < (\mathcal{R} - s_n)^2$ $(n \ge 0)$. Therefore,

$$\overline{\lim_{r \to \mathcal{R}}} \int_{E \cap (0,r)} \frac{(\mathcal{R} - r)dt}{(\mathcal{R} - t)^2} \ge \overline{\lim_{n \to \infty}} \int_{E \cap (s_n, t_n)} \frac{(\mathcal{R} - t_n)dt}{(\mathcal{R} - t)^2} = \overline{\lim_{n \to \infty}} \left(1 - \frac{\mathcal{R} - t_n}{\mathcal{R} - s_n} \right) = 1,$$

i. e. the set E has upper density 1 on $(0, \mathcal{R})$.

Let $r_0 = \min\{r \in [0, \mathcal{R}) : S_f(r) \ge \max\{e^e, \sqrt{1 + |c_0|^2}\}\}$, and $x_0 = \ln S_f(r_0)$. Put

$$R(r) = \mathcal{R} - (\mathcal{R} - r) \exp\left\{-\frac{1}{\ln^2 \ln S_f(r)}\right\} \quad (r \in [r_0, \mathcal{R}))$$

Applying Lemma 3 for the functions $u(r) = \ln S_f(r)$ $(r \in [r_0, \mathcal{R}))$ and $\varphi(x) = x^2$ $(x \ge x_0)$, we have

$$\ln S_f(R(r)) < e \ln S_f(r) \quad (r \in [r_0, \mathcal{R}), \ r \notin E_7), \tag{44}$$

where E_7 is a set of finite logarithmic measure on $(0, \mathcal{R})$. Furthermore, obviously,

$$\frac{R(r)}{R(r) - r} \sim \frac{\mathcal{R}}{\mathcal{R} - r} \ln^2 \ln S_f(r) \quad (r \to \mathcal{R}).$$
(45)

Let $C_3 = C_1 + 1$, where C_1 is the constant from Theorem 1. Using this theorem with R = R(r) and taking into account (44) and (45), we see that for random analytic function (2) a. s. for each $a \in \mathbb{C}$ the inequality

$$\ln S_f(r) \le N_{f_\omega}(r,a) + C_3 \ln \ln S_f(r) + \ln \frac{1}{\mathcal{R} - r} + h(|a|) \quad (r_7(\omega) \le r < \mathcal{R})$$

$$\tag{46}$$

holds.

We consider the function l_f , introduced in Theorem 2. Putting $C_{11} = C_2 \ln^2 \frac{\mathcal{R}}{r_0}$, by Theorem 2 for the random analytic function defined by (2) a. s. for each $a \in \mathbb{C}$ and arbitrary $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, we obtain

$$N_{f_{\omega}}(r,\alpha,\beta,a) \leq \frac{\beta-\alpha}{2\pi} \ln S_f(r) + C_{11} \sqrt[3]{\ln^2 S_f(r) l_f(r)} \quad (r_8(\omega,a) \leq r < \mathcal{R}).$$
(47)

Next we note that (44) and (45) implies the inequality

 $l_f(r) \le 2(\ln \ln S_f(r) - \ln(\mathcal{R} - r)) \quad (r \in [r_9, \mathcal{R}), \ r \notin E_7).$

Using this inequality together with (47), we have

$$N_{f_{\omega}}(r,\alpha,\beta,a) \leq \frac{\beta - \alpha}{2\pi} \ln S_{f}(r) + C_{11} \sqrt[3]{2 \ln^{2} S_{f}(r)} \left(\ln \ln S_{f}(r) + \ln \frac{1}{\mathcal{R} - r} \right) = \\ = \ln S_{f}(r) \left(\frac{\beta - \alpha}{2\pi} + C_{2} \sqrt[3]{\frac{2 \ln \ln S_{f}(r)}{\ln S_{f}(r)} + \frac{2}{y(r)}} \right) \quad (r_{10}(\omega,a) \leq r < \mathcal{R}, \ r \notin E_{7}).$$
(48)

Put $E_6 = E \setminus E_7$. It is clear that the set E_6 has upper density 1 on $(0, \mathcal{R})$. Using (42) and (48), a. s. for every $a \in \mathbb{C}$ and all $\alpha, \beta \in \mathbb{R}, \alpha < \beta \leq \alpha + 2\pi$, we obtain

$$\lim_{E_6 \ni r \to \mathcal{R}} \frac{N_{f_\omega}(r, \alpha, \beta, a)}{\ln S_f(r)} \le \frac{\beta - \alpha}{2\pi}.$$
(49)

Then, obviously, the validity of the relation (4) as $E_6 \ni r \to \mathcal{R}$ follows from equality (41), inequality (46) and inequality (49), applied to the angles β and $\alpha + 2\pi$ instead of the angles α and β , respectively.

REFERENCES

- 1. Hayman W.K. Meromorphic functions. Clarendon Press (Oxford), 1964.
- Goldberg A.A., Ostrovskii I.V. Value distribution of meromorphic functions. Translations of Mathematical Monographs, V.236. American Mathematical Society, Providence, R.I., 2008.
- 3. Kahane J.-P. Some Random Series of Functions. Cambridge University Press, 1994.
- Offord A.C. The distribution of the values of a random function in the unit disk// Studia Math. 1972. V.41. – P. 71–106.
- Mahola M.P., Filevych P.V. The value distribution of a random entire function// Mat. Stud. 2010. V.34, №2. – P. 120–128.
- Hayman W.K. Angular value distribution of power series with gaps// Proc. London Math. Soc. (3). 1972. – V.24. – P. 590–624.
- Murai T. The deficiency of entire functions with Fejér gaps// Ann. Inst. Fourier (Grenoble). 1983. V.33. – P. 39–58.

- Hayman W.K., Rossi J.F. Characteristic, maximum modulus and value distribution// Trans. Amer. Math. Soc. - 1984. - V.284, №2. - P. 651-664.
- Offord A.C. The distribution of the values of an entire function whose coefficients are independent random variables (I)// Proc. London Math. Soc. – 1965. – V.14A. – P. 199–238.
- 10. Offord A.C. The distribution of the values of an entire function whose coefficients are independent random variables (II)// Math. Proc. Cambridge Phil. Soc. 1995. V.118, №3. P. 527–542.
- 11. Filevych P.V. Some classes of entire functions in which the Wiman-Valiron inequality can be almost certainly improved// Mat. Stud. 1996. V.6. P. 59-66. (in Ukrainian)
- Filevych P.V. Correlations between the maximum modulus and maximum term of random entire functions// Mat. Stud. - 1997. - V.7, №2. - P. 157-166. (in Ukrainian)
- Filevych P.V. Wiman-Valiron type inequalities for entire and random entire functions of finite logarithmic order// Sib. Mat. Zhurn. - 2003. - V.42, №3. - P. 683-694. (in Russian). English translation in: Siberian Math. J. - 2003. - V.42, №3. - P. 579-586.
- 14. Filevych P.V. On relations between the abscissa of convergence and the abscissa of absolute convergence of random Dirichlet series// Mat. Stud. 2003. V.20, №1. P. 33–39.
- Filevych P.V. The Baire categories and Wiman's inequality for entire functions// Mat. Stud. 2003. V.20, №2. – P. 215–221.
- Skaskiv O.B. Random gap series and Wiman's inequality// Mat. Stud. 2008. V.30, №1. P. 101–106. (in Ukrainian)
- Skaskiv O.B., Zrum O.V. On an exeptional set in the Wiman inequalities for entire functions// Mat. Stud. - 2004. - V.21, №1. - P. 13-24. (in Ukrainian)
- Zrum O.V., Skaskiv O.B. On Wiman's inequality for entire functions of two variables// Mat. Stud. 2005. – V.23, №2. – P. 149–160. (in Ukrainian)
- Zrum O.V., Skaskiv O.B. Wiman's inequalities for entire functions of two complex variables with rapidly oscillating coefficients// Math. Meth. Fhys.-Mech. Filds. – 2005. – V.48, №4. – P. 78–87. (in Ukrainian)
- Skaskiv O.B., Zrum O.V. Wiman's inequalities for entire functions of two complex variables with rapidly oscillating coefficients// Math. Bull. Shevchenko Sci. Soc. - 2006. - V.3. - P. 56-68. (in Ukrainian)
- Zadorozhna O.Yu., Skaskiv O.B. On the domains of convergence of the double random Dirichlet series// Mat. Stud. - 2009. - V.32, №1. - P. 81-85. (in Ukrainian)
- Skaskiv O.B., Zadorozhna O.Yu. On domains of convergence of multiple random Dirichlet series// Mat. Stud. - 2011. - V.36, №1. - P. 51-57.
- Skaskiv O.B., Kuryliak A.O. Direct analogues of Wiman's inequality for analytic functions in the unit disc// Carpathian Math. Publications. - 2010. - V.2, №1. - P. 109-118. (in Ukrainian)
- 24. Skaskiv O.B., Kuryliak A.O. The probability of absence zeros in the disc for some random analytic functions// Math. Bull. Shevchenko Sci. Soc. 2011. V.8. P. 335-352.
- Benbourenane D., Korhonen R. On the growth of the logarithmic derivative// Comput. Meth. Func. Theory. – 2001. – V.1, №2. – P. 301–310.
- Kondratyuk A.A., Kshanovskyy I.P. On the logarithmic derivative of a meromorphic function// Mat. Stud. - 2004. - V.21, №1. - P. 98-100.
- Hayman W.K., Kennedy P.B. Subharmonic functions. V.1. London Mathematical Society Monographs, №9, Academic Press, London, 1976.
- Levin B.Ja. Lectures on entire functions. Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, R.I., 1996.
- Andrusyak I.V., Filevych P.V. Minimal growth of an entire function with given zeros// Sci. Bull. Chernivtsi Univ., Ser. Math. 2008. V.421. P. 13–19. (in Ukrainian)

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NASU, marichka_stanko@ukr.net

S. Z. Gzhytskyy Lviv National University of Veterinary Medicine and Biotechnologies, filevych@mail.ru