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Let R € (0,400], f(2) = > ¢,2™ be an analytic function in the disk {z: [z| < R}, Ty (r)
be the Nevanlinna characteristic, Ny(r, o, 3, a) be the integrated counting function of a-points
of f in the sector 0 < |z] < r, a < arg, z < B, and (w,(w)) be a sequence of independent
equidistributed on [0, 1] random variables. Under some conditions on the growth of f it is
proved that for random analytic function f,(z) = 3 e?™r(“)q, 2" almost surely for every
a € Cand all @ < 8 < a+ 27 the relation Ny (r,a, 5,a) ~ %wa (r), r — R, holds outside
some exceptional set £ C (0, R).

M. II. Maroaa, I1. B. @uieBuu. Yeno6oe pacnpedeserue 3HAUEHUT CAYUGUHDIT AHANUMULECKUL
dynxyud // Mar. Cryaii. — 2012. — T.37, Nel. — C.34-51.

Iycrs R € (0,400], f(2) = > cnz"™ — anazmruueckast B Kpyre {z: |z| < R} dyHnkiws,
Ty (r) — xapaxrepuctuka Hesanmummst, Ny(r, o, 8,a) — ycpenmennas cauraiomas dyHKIHs
a-touek dyurmpn f B cekrope 0 < |z| < 7, a < arg,z < B, a (wy(w)) — mocienosa-
TEJIbHOCTh HE3aBUCHMBIX PABHOMEPHO pacmpeneneHubix Ha [0,1] cayuaitabix semmaums. lpn
HEKOTOPBIX YCJIOBHSX Ha POCT f JOKa3aHO, 4TO JJI CIydaiiHON aHaJUTHYecKoil (yHKIUH
fu(z) =3 2mwn(@) g, 2™ nourn maBeproe ms Beex a € C u mobbix o < f < v+ 27 BHE HeKo-
TOPOrO UCKJIIOUINTEIbHOro Muoxkectsa E C (0, R) Bemmonnsercs coornomenue Ny, (7, a, 5, a) ~
%wa (r), r —>R.

1. Introduction. Let D(r) = {z € C: |z| < r} for all r € (0, +00], In" 2 = Inmax{z, 1} for
each x € [0, +00), and S(r,a,8) = {2z € C: 0 < |z] < r, a < arg, z < 8} for any o, 8 € R
such that a < f < a + 27 (here, for a complex number z # 0, arg, z is the value of its
argument, which belongs to the interval [, v 4+ 27)). By L we denote the class of positive
unbounded nondecreasing functions on [0, +00).

We consider a measurable set £ C R, and let R € (0,+0c0]. As usual, if R = +o00
(R < +00), then the integral

st )
En(l400) T EN(0,R) R—r

is called the logarithmic measure of the set £ on (0, R). The limits
— dt dt — R —r)dt R —r)dt
lim —, lim — <lim / %, lim / %)
=+ JEnwos) T r—4oo JENO) T =R JEn(o,r) (R—1) r=R J EN(0,r) (R—1)
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are called the upper density and the lower density of the set £ on (0, R), respectively.

We say that a set F has density d on (0, R), if its upper density and its lower density on
(0,R) are equal to d. It is easy to prove that every set E of finite logarithmic measure on
(0,R) has density 0 on (0,R).

All functions meromorphic (in particular, analytic) in a disk considered below are assumed
to be different from constants.

We use the standard notations from the value distribution theory of meromorphic func-
tions ([1, 2]). In particular, if R € (0,4+oc], r € (0,R), o < f < o+ 2, and f is a function
meromorphic in D(R), then let ns(r) be the counting functions of poles of the function f,
ng(r) =ns(r) —ns(0), and ng(r, o, B) be the counting functions of poles of the function f in
the sector S(r, «, ). We define the integrated counting functions of poles, integrated counting
functions of poles in the sector S(r, a, 3), proximity function, Nevanlinna characteristic, and
maximum modulus of the function f by

dt -«
7+ 2

T‘N d ’f‘~
Ny = [ 0 g tar Nyra8) = [ a.8) ns(0) Inr,

1

T or

my(r) /0 7rln+ ]f(reie)\de, Tp(r) = Ng(r) +mye(r), M(r) =sup{|f(2)|: |z| =1},

respectively. For every a € C we put X;(r,a):=X = (r), where X is some of the characteri-
%(r,a,ﬂ), Ny(r,o, B,a) = N%(r,a,ﬁ), and let
cf(a) be the first non-zero coefficient in the Laurent series of the function f(z) — a in a nei-

ghborhood of the point z = 0.
Denote by H(R) the class of all functions analytic in the disk D(R) of the form

stics n, n, N, mor T, ng(r,o, B,a) = n

f2) =Y e 1)

1

such that Sy(r):= (302, [en?r*)2 — +o0 (r = R).

Consider a probability space (2,4, P), where 2 is some set, A is a o-algebra of subset
of Q, P is a complete probability measure on (€2, .4), and suppose that on this space there
exists a Steinhaus sequence (w,(w)), i. e. a sequence of independent uniformly distributed
on [0, 1] random variables (see [3]). From now on we assume that such a probabilistic space
and a corresponding Steinhaus sequence are given and fixed.

Along with an analytic function f € H(R) of the form (1) we consider the random
analytic function

fu(z) = Z e2miwn(W) e o (2)
n=0

The value distribution of random analytic functions of form (2) were studied in the papers
[4] (for R = 1) and [5] (for R = +00). In particular, in [5] it is proved the following theorems
(Theorem A is proved for R = +00).

Theorem A. Let R € (0,+oc], and f € H(R) be an analytic function of form (1). Then
for the random analytic function defined by (2) almost surely (a. s.) the inequality

In S¢(r) < Ny (r,0) + Coln Ny, (r,0)  (ro(w) <r <R)

holds, where Cy > 0 is an absolute constant.
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Theorem B. Let f be an entire function of form (1), ¢ € L, and f0+oo % < +00. Then
there exists a set E of finite logarithmic measure on (0, +00) such that for the random entire

function defined by (2) a. s. for every a € C we have
InS¢(r) < Ny, (r,a) +In® Ny, (r,a)o(In Ny, (r,a)) - (r > ro(w,a), r ¢ E).

The proof of Theorem A for the case R € (0,+00) is analogous to that for the case
R = +oo given in [5]. So, we assume that Theorem A is proved for all R € (0, +o0].

In this paper we consider some problems concerning the angular value distribution of
random analytic functions of form (2). We also use some refinements to make Theorem B
more precise.

Note that questions about the angular value distribution of analytic functions in the
terms of characteristic N¢(r, o, 5, a) were investigated in [6]-[8]. Mainly these papers deal
with entire functions (in particular, entire functions presented by lacunary power series),
satisfying the condition

In My(r) ~T¢(r) (E12r — +00), (3)

where Fj is a set, that is large in some sense. The following result of W. K. Hayman and
J. F. Rossi [8] is one of the most general in this direction.

Theorem C. Let f be an entire function of the order

— Inln My(r)

pyi= lim

>0
r—+00 Inr

such that relation (3) holds on a set E; of density 1 on (0,+400). Then there exists a set Fy
of upper density 1 on (0, +00) such that for every a € C and all o, f € R, a < f < a + 2,
we have

ﬁ27rOéTf(’l“) (EQ o57r — —|-OO)

Nf(/r"a7/87a) ~
The next assertion follows from Theorems A and C.

Corollary A. Let f be an entire function of the order py > 0 and form (1). Then for the

random entire function defined by (2) a. s. there exists a set E,, of upper density 1 on (0, +00)

such that

b —«
27

as B, >r — 4oo for every a € C and all o, € R, a < f < a + 27r.

Ny, (r, e, B,a) ~ In S¢(r) (4)

We omit a justification of Corollary A, since below we shall prove a stronger statement.
The following theorems are the main results of our paper.

Theorem 1. Let R € (0,+00], and let f € H(R) be an analytic function of form (1). Then
there exists a function h € L such that for the random analytic function defined by (2) a. s.
for every a € C the inequality

InS¢(r) < Ny, (r,a) + CyInln S¢(R) + In RR + h(la]) (r(w)<r<R<R), (5

- T

holds, where C; > 0 is an absolute constant.
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Theorem 2. Let R € (0,+00], let f € H(R) be an analytic function of form (1), let
ro € (0,R) be an arbitrary fixed number such that Sy(ro) > max{e, /1 + |co|?}, and

l¢(r) = min {lnlnSf(R) +1In RR R e [T‘,R)} (ro <r <TR).

_r.

Then for the random analytic function defined by (2) a. s. for every a € C there exists
a constant C' = C(w, a) > 0 such that for all o, 5 € R, a < 8 < «v + 27, we have

b —«
2T

Netraio) < Py + ¢ (i) +.0) [+ om i) e

o
for each r € (ry,R), where Cy > 0 is an absolute constant.
Next, we formulate some corollaries from Theorems 1 and 2.

Corollary 1. Let f be an entire function of form (1). Then there exist a function h € L and
a set Es of finite logarithmic measure on (0, +00) such that for the random entire function
defined by (2) a. s. for every a € C the inequality

InS¢(r) < Ng,(r,a) + CsInln S¢(r) + h(la]) (r > re(w), r ¢ Es) (6)
holds, where C3 > 0 is an absolute constant.

Corollary 2. Let f be an entire function of form (1) such that
T In S¢(r)

St ARV 7
r—+oo In?rInlnr > (7)

Then there exists a set FEy of upper density 1 on (0,+00) such that for the random entire
function defined by (2) a. s. for every a € C and all o, € R, a < 8 < a + 2, relation (4)
holds as Ey > r — +o00.

Corollary 3. Let p € (0,+00), and let f be an entire function of the order py > p and
form (1). Then there exists a set E5 of upper density 1 on (0, 4+00) such that for the random
entire function defined by (2) a. s. for every a € C and all o, € R, a < f < a + 27, the
inequality

b —«

Ny, (r,a, B, a) —

InSy(r)| < %lng Sp(r)Inln Sp(r) (r > r3(w,a), r € E5) (8)

3

holds, where Cy > 0 is an absolute constant.

Corollary 4. Let f be an entire function of finite order and form (1). Then for the random
entire function defined by (2) a. s. for every a € C we have

Ny, (r,a) ~InSy(r) (r — +00). 9)
Corollary 5. Let f be an entire function of finite order and form (1) such that

lim lnS?]’c(r) = +o0. (10)

rtoo I

Then for the random entire function defined by (2) a. s. for every a € C and all o, 8 € R,
a < f < a+ 2w, relation (4) holds as r — +o0.
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Corollary 6. Let R € (0,400), and let f € H(R) be an analytic function of form (1) such

that S
Tim — fl(r) = +o0. (11)

r—R ln =

Then there exists a set Fg of upper density 1 on (0,R) such that for the random analytic
function defined by (2) a. s. for every a € C and all a, f € R, a < f < a + 2, relation (4)
holds as Eg 5 r — R.

Concluding the Introduction, we note that the value distribution and other properties of
some classes of random analytic functions were investigated also in [9]—[24].

2. Auxiliary results. Let z,...,x, € [0,+00). The following inequalities
n n n n

In* H:cl, §Zln+\xn|, In* Zx,, SZlnﬂan—lnn
v=1 v=1 v=1 v=1

are well known (see, for example, [2], p. 14). Below we will use these inequalities without
additional explanations.
The following lemma is proved in [25].

Lemma A. Let R € (0,400], and let g be a meromorphic function in the disk D(R) such
that g(0) = 1. Then for arbitrary o, § € (0,1) the inequality

1 [* g (re?) " T,(R) R \“
— , do < LA 12
o )y | gtre? _O(a,ﬁ)( R 0<r<R<R) (12)
is true, where
« o\ 11—«
o) = 5 N [4+ (2% + 2%> o
Q,p) = -3 + Be sec 5

For a function f meromorphic in D(R) and every z € D(R) we put g*(z) = z¢'(z). Then
inequality (12) is equivalent to the inequality
g (re”)
g(ret)
Arguing as in the paper [26] in the proof of its main result, and using inequality (13)
instead of inequality (12), it is easy to prove the following statement.

«a
1 2

R
R—r

do < C(a, B) (Tg(R) ) 0<r<R<R). (13)

27 Jo

Lemma B. Let R € (0, +0c|, and let g be a function meromorphic in the disk D(R) such
that g(0) = 1. Then

R

- T

my (r) <In* (Tg(R)R ) +4,8517 (0<r<R<R).

Lemma 1. Let F C [0,27] be a measurable set, R € (0,+oc], r € (0,R), f be a function
analytic in the disk D(R) of form (1). Then

1 + i0 L wF), o
_ < LY J
27?/;1n |f(re™)]|do < 26—1— 5 In™ Sy(r), (14)

™

where u(F) is the Lebesgue measure of the set F.
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Proof. Let £ = {0 € F:|f(re?)] > 1}. If u(€) = 0 then inequality (14) is trivial. If u(€) > 0,

then, using the Jensen inequality (see, for example, [27], p. 42)

ﬁg)/glnﬁ(rewﬂ?d@ <In (ﬁ/ﬁf{rewﬂ%&)

and the Parseval equality
2w
/0 | f(re®)|?do = QWS]%(T),

we obtain

5 e = [misteetypan < B2 (s [1stenypan) <

n(&

p(€) 1 /2" oy p&),  2m ()
< 1 NNFdo | = 1 In S¢(r).
<M (s [ e 2+ 5 s )
Since the most value of the function y(z) = £In< on the interval (0,+o00) is equal to o,

Lemma 1 is proved.

]

Lemma 2. Let R € (0,+0o¢], and let f be a function analytic in the disk D(R). Then for

every a € C and all v, R € (0,R), r < R, we have

R 1
: <InTIn*t In —— +In"
mf,ia(r) <In"In" S¢(R) + N +1In |cf(a)|+
1
+ny(0,a) anrE—HnJr ns(0,a) +In* |a] + 7. (15)
Proof. We fix arbitrary a € C and r, R € (0,R), r < R. Put
_ f(z)—a
9(2) = op(a) 2700 (2 € D(R)).
It is easily verified that
1) g (2)
= +ns(0,a z€D(R)).
f(z)—a 9(2) f( ) ( (R))
Consequently,
m g (r) <mg (r) +In" ny(0,a) + In 2. (16)
f—a g
In addition, ¢g(0) = 1. Therefore, by Lemma B, we have
R
mg (r) <In* T,(R) +In 7+ 4,8517. (17)
Next note that Lemma 1 implies the inequality
1
Ty(r) < % +1In" S¢(r)  (r € (0,R)). (18)
Using this inequality with R instead of r, we obtain
1 1
In" T,(R) < In* Ty(R) + In" |a| + In2 + In" +ns(0,a) InT = <
lcs(a)l R
1 1
<In*In" Sy(R)+2In2+In" |a| + In" ——— +ns(0,a) In" o (19)
|cs(a)

Then inequality (15) is an obvious consequence from inequalities (16), (17), and (19). O
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Let R € (0, +o0], 0,R), and let g be a function analytic in the disk D(R). We set

r e (
E,(r) = {0 € R: g(te™) # 0 for all ¢ € (0,7]}.
Note, that & (ry) C & (r1) if 0 < r; < ry < R. The set £,(r) is periodic in the sense that
6 € & (r) if and only if (6 + 27) € & (r). In addition, [0,27)\&,(r) is a finite set for all
re (0,R).
Suppose that g(0) = 1, and fix an arbitrary 8 € &,(r). Then g(te) # 0 for each ¢ € [0, r].
In view of this, by v,(t,8) we denote the continuous branch of the argument of the function
g(te") such that v,(0,6) = 0, and put
1 dt
V,(r,0) —/ o,(t, )%,
o J, /

™

The following statement is well known (see [8], [6], and [28], p. 126).

Lemma C. Let R € (0, +oc], r € (0, R), and let g be a function analytic in the disk D(R)
such that g(0) = 1. Then:

(i) for all o, B € &,(r) such that o < f < a+ 21 we have

I :
N(r.0,5,0) = o [ Inlglre)lds + Vi) = Vy(r, )

(ii) for all a, f € R such that o < 8 < o + 27w we have

/B ]' " I1e% i Tdt
/a Vg(r,e)dGZ%/o(ln\g(te )\—ln]g(teﬁ)Dlnz?.

Let g be a function analytic in the disk D(R) such that g(0) = 1. Consider an arbitrary
interval (p, 1) C &,(r), fix some point « in this interval, and let 8 # a be an arbitrary point
of this interval. Then the function g has no zeros in the sector S(r, min{«, 5}, max{«, 5}).
Therefore, Ny(r, min{«, 5}, max{«, 5},0) = 0. According to (i) of Lemma C we have

1 (7 i
V,(r, B) = Vy(r,a) + %/ In |g(re™)|do.

«

Since for a fixed « the function y(3) = [ f In |g(rei?)|df is continuous and bounded on every
finite interval of the real axis, then Vi (r, ), as a function of f3, is continuous and bounded
on the interval (¢,). From the above considerations, as well as from the periodicity of the
set £,(r) and the finiteness of the set [0,27)\&,(r), we obtain that the function V(r, 5) is
continuous and bounded on &,(r).

Now let f be an arbitrary function analytic in the disk D(R). Put

6
g9(z) = W

Then ¢g(0) =1, &(r) = &,(r), and ny(r, o, B,0) = ny(r, @, B,0). Therefore, setting Vy(r,6) =

Vy(r,0) for all @ € E;(r), from Lemma C, as a consequence, we obtain the following statement.

Lemma D. Let R € (0,400], r € (0,R), and let f be a function analytic in the disk D(R).
Then there exists a function Vy(r,6) continuous and bounded on E;(r) such that:
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(i) for all o, B € Ef(r) such that o < < a + 27 we have

B -
Ny(r.,50) = o= [l p(re)ias - £

(67

In|ef(0)] + Vi(r, a) — Vi(r, 8);

(ii) for all a, f € R such that o < 8 < o + 2w we have

rdt

A 1 (" , .
/ Vf(r,e)cw:%/o(1n|f(tew“)|—ln|f(te’6)|)lnz?.

Note that the equality from assertion (i) of Lemma D is a generalization of the following
classical Jensen equality

Nf(r,()):i 2ﬂln|f(rei9)|d0—ln|cf(0)| (r € (0,R)). (20)
2w Jo

Also note that equality (20) implies the inequality
Ny(r,0) < Ty(r) ~In|es(0)]  (r € (0,R)). (21)
In fact, the following statement [29] is an immediate consequence of the classical Borel-

Nevanlinna lemma (see [2], p. 90).

Lemma E. Let u(r) be a nondecreasing function unbounded on [rg,+00), xo = u(ry),

and let p(x) be a continuous positive function increasing to +oo on [rg, +00) such that

f+oo 4z — 4o0. Then for all r > ro outside a set E of finite logarithmic measure on

o p(z)
" (rexp {m}) < eu(r).

(0, +00) we have
Lemma 3. Let 0 < ry < R < +00, u(r) be a nondecreasing function unbounded on [ry, R),
xo = u(rg), and let p(x) be a continuous positive function increasing to +o0o on [xq, +00)

such that f;goo % < 400. Then for all v € [ro,R) outside a set E of finite logarithmic

measure on (0, R) we have

" <7z ~ (R —r)exp {—m}) < eu(r).

Proof. 1t suffices to show that the set

Fe {r € [ro,R): (R— (R—r) exp{—m}) > eu(r)}

has finite logarithmic measure on (0, R).
fue R R -1
/r" JR—
T/:R—r’ r(’]:R_TO, v('r"):u(R - >
Then r =R (1 — %) It is easy to verify that the set F' is the image of the set
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under the mapping r =R (1 — %) By Lemma E, the set F”’ has finite logarithmic measure
n (0, +00). Therefore,

dr r 1 dr’
= —dR(|1——=| = —
rR—r /F/R ( r’) ! < oo,

i. e. the set F' has finite logarithmic measure on (0, R). O

3. Proofs of theorems and corollaries.

Proof of Theorem 1. Let R € (0,+00], f € H(R) be an analytic function of form (1), and
m = min{n € N: ¢, # 0}. Fix an arbitrary ro € (0,R) such that Sy(r) > Sy(r) > e
(r > rg), and for each = € [0, +00) put

1
ho(x) =mIn® — +Intm+InT2+7,  h(z) = ho(z) + In" max{|co| + =, |en|} + In" o]
To m
It is clear that h € L.
Consider the random analytic function defined by (2). Then, as easily seen, for all w € Q
and each a € C the relations

lepz 0)] = mleml,  lep,(a)] < max{leo| + |af, |eml}, |7, (0, )] <m

are true.
Let Cy be the constant from Theorem A, and A is the following event: there exists
ro(w) € (0,R) such that

In Sp-(r) < Npx(1,0) + (Co 4+ 1) InIn Sy« (r)  (ro(w) <r < R). (22)

By Theorem A we have P(A) = 1. Furthermore, since Sy«(r) > S¢(r) (r > r9) and the
function y(z) = x — (Cy + 1) Inx is increasing on [xg, +00), for every w € A satistying (22)
we obtain

InS¢(r) < Ny (r,0) + (Co + 1) Inln Sy (r)  (r(w) <r <R), (23)

where r1(w) > 7.

Fix an arbitrary w € Q. Using Jensen’s formula (20), written for the functions f and
fo — a, and Lemma 2 for the function f, instead of f, for each a € C and all r, R € [rg, R),
r < R, we have

f(re?) |cs(0)]
N N el T ) g —In e <
£5(r,0) = Ny, (r, a) = M) —a e (a)] =
ey (0)] R 1 12 ()]
<m; (r)—In <InlnS{(R) +In —— +In* + ho(lal) — In == =
er.(a)] ! R—r e ()] er.(a)]

R
=InlnS;(R)+In 7 + ho(lal) + In™ |cp, (a)] — Inep (0)] <

R
<Inl 1 .
<InlnS¢(R) + nR_T—i—h(laD

From this and from (23) for arbitrary w € A and a € C we obtain

InS¢(r) < Ny, (r,a) + (Co+2)Inln S¢(R) + In R]ir +h(la]) (rmw)<r<R<TR). U
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Theorem 2 is obtained from Theorem 1 and the following statement.

Theorem 3. Let R € (0,+00], g € H(R), and let o € (0, R) be an arbitrary fixed number
such that S,(ro) > 1, and

hy(r) = /7«: (lnS (t) — Ny(t,0) — In|c, (0)] + é) lng% (ro <r <R). (24)

Then there exists a constant C; > 0 such that for all o, 3 € R, a < 8 < o + 27, we have

Ny(r,a, 5,0) < 52;04 InS,(r) + 3{'/% In? Sy(r)hg(r) +C7 (ro <r <R). (25)

Proof. Let C7 = 1 4+ 2C5+ 2| In|c,(0)]|, where Cg is a constant such that |V, (rg, )| < Cg for
e g9 g

every 6 € £,(ro) (see Lemma D).
Fix arbitrary r > 7y and o, 8 € R such that o < § < a + 27. If 8h,(r) > In Sy(r), then
inequality (25) holds. Indeed, using inequalities (21) and (18) with the function ¢ instead

of f, we have

Ny(r.0,5,0) < Nyfr.0) < -0 s, () + Ny (r,0) <
B 1 /8 o 3 2
< . lnS( )+ 1InS,(r )+2——ln|cg( )| < 5 InSy(r) 4+ 24/1In* S, (r)hy(r) + C5.

Now let 8h,(r) < InSy(r) and

3 8_7T hy(r)
9 InS,(r)

E =

Inequalities (21) and (18) imply that In Sy(t) — Ny(t,0) —In|c,(0)|+ 2 > - for all ¢ € (ro, 7).
Thus, hy(r) > 0. Moreover, InS,(r) > 0. Therefore, ¢ > 0. On the other hand

1 rdt
- 1 10 In - —
pl6) = 5- / lg(te)|n "

Then, applying Lemma 1 to the function g, we obtain

a=2e /1 a=2e rdt /1 rdt
I:= = — ] 0 In-— —1 In-—
1 /a ©(0)do /TO (27r L_3€ n|g(te )]d@) n _— _/TO (2e+2 n.S,(t )) nt .

—3e
From this and from the mean value theorem, applied to the integral I7, it follows the existence
of a number (; € [a — 3e, & — 2¢] such that

1 [/ 1 dt
P(G) < g/ro (2—6 + %lnSg(t)) ln;7. (26)

Since for any x,y € R the Jensen formula implies the equality

1 Y 427 )
Ll lg(re®)|d0 = N, (r,0) + In |, (0)] — — / n|g(ré®)|d6, ,y € R,
2 J, 27 J,
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using Lemma 1, in the case x < y < x + 27 we have

1 [Y ; I o+2r—y
o/ In |g(re®)|dd > Ny(r,0) + In |c,(0)| — O e In.S,(r).
Then
« 1o - rdt
Iy:= = — | 1 i In—— >
2 /a_ego(ﬁ)dﬁ /TO (27r /a_8 n |g(te )|d9> nyo 2

" 1 27—«
Z/ (N (t,0) + In ¢y (0)] — — — InS (t)) In——.
ro g g 2e 2m g ti

Therefore, the mean value theorem applied to the integral I5, yields the existence of a number
(2 € [ — g, a] such that

1 (" 1 2r — dt
o((G) > g/m (Ng(t,O) +1In|c,(0)] — o~ 7T27r < 1n59(t)) ln;?. (27)

Then, using Lemma D and inequalities (26) and (27), we obtain

G2 1 r ) . d
ta= [ 0000 = V000 = o [ gt = mlgtee <y =
1/ 1 d 1
= 0(G) — @) £ 2 [ (S0 = Ny(.0) = Iy (0)] + D) T = Zhy(r)

T0

From the inequality (» —(; > € and from the mean value theorem, applied to the integral I3,
it follows the existence of a number ¢ € [(, (2] N E,(r) such that

Vy(r,€) = Vlro,O) < Ssh(r). (28)

Similarly we can prove that there exist numbers n; € [3, 5+ €] and 1, € [5 + 2¢, 5 + 3¢]
such that

1 /" _
p(m) > g/m (Ng(t,()) +1n |, (0)] — % o lnSg(t)> 1n¥?

1 (/1 3 rdt
< - — =
o(mn2) < 5/ (26 + o lnSg(t)) lnt .

Then
L= / " (V(r,8) — Vi (70, ))d8 = plm) — () > —éhg(r»

m

The inequality 75 — 1 < 3¢ together with the mean value theorem applied to the integral I,
implies the existence of a number 7 € [y, n2] N E,(r) such that

Vy(rm) = Vylrom) 2 —55hy(r). (29)
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Using Lemmas D and 1, as well as inequalities (28) and (29), and taking into account
that n — ( < B — a+ 6e < 47, we obtain

N( _l ! 0 _U—C
A1.03,0) < Nyfr: 6 m.0) = 5 [ Inlgfre)idd — T ey (0)] + Vi) = Vi) <

77 ¢ 1 n—(
e — <
S o lnS()—i-e o In |y (0)] + V,(r, ) — Vg (r,m) <
s%ms(r)+—+2|1n!cg(o>||+—h()+08+32h(HCF
f@ s, +3\/—12 () + C. -

Proof of Theorem 2. Let f € H(R) be an analytic function of form (1), and let o € (0,R)
be an arbitrary fixed number such that S¢(rg) > max{e, /1 + |co|?}.
Consider the random analytic function defined by (2). For arbitrary w € Q, a € C, and

r € (0,R) we have S7 _ (r) = |coe*™) — a|> + S3(r) — |co|*. This implies the inequalities

SHr) = leof* < 8%, _a(r) < S}(r) + (|co| + |al)*.

Then SJ%UJ _.(r) > 1 by the first of these inequalities. By the second of these inequalities, there
exists a constant Cy = Cy(a) > 0 such that

lIlew_a(T) SIHSf(’f’)—i—Og (T’0<7‘<R). (30)

Let C'y > 0 is the absolute constant and h € L is the function, the existence of which
follows from Theorem 1. Let B be the next event: for every a € C inequality (5) holds. Then,
by Theorem 1, P(B) = 1.

Fix arbitrary w € B and a € C, and let g(z) = f,(2) — a. Then (5) and (30) implies the
existence of a constant Cjy = Cjp(w, a) > 0 such that

InSy(r) — Ny(r,0) — In|c,(0)] +é < Ci(lg(r) + Cro) (ro <r <R).

So, if hy is the function defined by the equality (24), then

hg(T) < 01 /T(lf(t) + CIO) ID%% (7’0 <r< R) (31)

o

By Theorem 3, there exists a constant C7 = C7(w, a) > 0 such that for arbitrary a, § € R,
a < B < a+ 27, inequality (25) holds. Using this inequality and also inequalities (30) and
(31), for arbitrary o, 5 € R, a < 8 < v + 2, and all r € (rp, R) we obtain

wa(r,a,ﬁ,a)zNg(na,B,O)S6 In S, ( +3\/—1 2 o1 +Cyr <

< 62_7(@ 1n5f(7‘) +09+3< 01111 (Sf( )+09) /TD (lf( )—i—ClO)lnC%) + Cs.

Finally, putting C(w,a) = max{Cy(a) + C7(w,a), Cio(w,a)} and Cy = 3¢/35L, we complete
the proof of Theorem 2. n
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Proof of Corollary 1. Let f be an entire function of form (1), 7o = min{r > 0: In Sy(r) > e},
and zo = In S¢(rp). Put

1

R(r) = rexp {m

b oo

Applying Lemma E to the functions u(r) = InSy(r) (r > ro) and ¢(z) = 2?

have

(x > xp), we

InS¢(R(r)) <elnS¢(r) (r>ry, r¢ Es), (32)
where Ej is a set of finite logarithmic measure on (0, +00). Furthermore, obviously,
% ~In’InSp(r) (r— 400). (33)

Let C3 = C7 + 1, where (] is the constant from Theorem 1. Using this theorem with
R = R(r) and taking into account (32) and (33), we see that for the random entire function
defined by (2) a. s. for each a € C the inequality (6) holds. O

Proof of Corollary 2. Let f be an entire function of form (1), for which condition (7) holds,
and let 79 € (0,400) be a fixed number such that S;(rg) > max{e, /1 + |co|?}. Put

. lnSf(r)
~In®rinln Sy(r)

y(r)

(r >1p). (34)

Then, obviously, condition (7) is equivalent to the condition

lim y(r) = +oo. (35)
r—+00
First we prove that (35) implies the existence of a set E of upper density 1 on (0, +00) such
that
lim y(r) = +oc. (36)

E3r—4o00

There is nothing to prove if the limit A\:=lim, ,, y(r) is equal to +00. Let A < +o0,
and let (\,) be an arbitrary sequence from the interval (), +00) increasing to +oo. Taking
into account that the function y(r) is continuous on (7, +00) and using (35), it is easy to
justify the existence of sequences (s,) and (t,) increasing to +oo such that ro < sp < to <
s1 <ty < ...,y(sn) =4\, y(tn) = A\, and N, < y(r) < 4\, for r € [s,,t,] and all n > 0.
Put E = (J77 ,[sn, tn]. Then obviously (36) holds. We show that E is a set of upper density 1
on (0,400). Indeed, since the function

~ InSg(r)
hlr) = Inln g’f(r)

is increasing on (r, +00), we have that

hlt) _ h(s) _ 3h(s.)
N AN, 4N,

This implies that s, < \/f, (n > ng). Therefore,

=3In%s, (n>ng).

In%t, —In?s, =

lim — > lim — = lim ,
r—400 En©r) T n=0 ) EA(spitn) tn n—00 tn

(37)
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i. e. the set F has upper density 1 on (0, +00).

Consider the function [, introduced in Theorem 2. It is clear that this function is increa-
sing on (79, +00), and therefore, by Theorem 2, for the random entire function defined by (2)
a. s. for each a € C and arbitrary «, 8 € R, a < f < a + 27, we obtain

b —«

Ny (r,a,fB,a) < In S¢(r) + CE{’/IHQ Se(r)le(r) In?r (r > ry(w,a)). (38)

27

Let E3 be a set of finite logarithmic measure on (0,+o00) for which (32) holds. Then
l(r) <2Inln S¢(r) for all r > ry, v ¢ E5, and from (38) we have

8-« f
5 InSy(r) + 02\3/21112 Si(r)Inln S¢(r)Inr =

= In Sy(r) (ﬁ;_ﬂa + Oy i) (r >rs(w,a), ¢ E3). (39)

wa<r7a7/87a) S

y(r)

Put E; = E\Es. It is clear that the set E; has upper density 1 on (0,+00). Using (39)
and (36), a. s. for each a € C and arbitrary o, 8 € R, @ < § < a + 27, we obtain
— Ny (r,o,B,0a) < 8 — o

1
Bisrteo  In Se(r) 7 2w

(40)

Then, obviously, the validity of relation (4) as E4 3 r — +oo follows from the equality
wa<7n7a7ﬁ7a) +wa<7',/8,0[+27r,a) = wa(r7 a)? (41>

inequality (6) and inequality (40), applied to the angles § and « + 27 instead of the angles
« and [, respectively. n

Proof of Corollary 3. Let p € (0,400), and f be an entire function of the order p; > p and
form (1). It is well known that in the definition of p; the characteristic M(r) can be replaced
with the characteristic Sy(r), i. e.

— InlnSy(r)
AT, T2

We consider the set &' = {r > 79: Inln S¢(r) > £Inr} and prove that its upper density on
(0,400) is equal to 1. There is nothing to prove if there exists r; > 0 such that Inln S(r) >
LInr (r > r1). Otherwise, E, as an open set, we can represent in the form of a countable
union of intervals. From this union one can choose a sequence of intervals ((s,,t,)) such that
for every n > 0 we have s, < t, < s,41, InInSy(s,) = £lns,, InlnSy(t,) = £1nt,, and
there exists z,, € (sp,t,) such that Inln S¢(x,) = % In z,,. Then

2 2 4
Int, = —InlnS¢(t,) > —Inln S¢(z,) = = Inx,,
~inin $(0,) > = Inln Sy ) = ;

from which we obtain the relation s, = o(t,,), n — +o00. This relation implies (43), i. e. the
set F has upper density 1 on (0, +00).

Put E5 = E\ E5, where Ej is a set of finite logarithmic measure on (0, +00) for which (32)
is satisfied. The set Es5 has upper density 1 on (0, +00) and, according to (39), for the random
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entire function defined by (2) a. s. for each a € C and arbitrary o, 5 € R, a < f < o + 2,
we have

52;0‘ In S;(r) + Cy §/2 In? Sy(r) InIn Sf(r)% In?1In S;(r) <

B—Oé 202
o In S¢(r) + W

Finally, using equality (41) and inequality (6), and putting Cy = 2C5, we complete the proof
of Corollary 3. O

Ny (r,o,B,a) <

<

In? Se(r)InlnSy(r) (r > rs(w,a), r € Es).

Proof of Corollary 4. Let f be an entire function of finite order and form (1). Corollary 4 is
obvious if f is a polynomial.

Let the function f be transcendental. Then Inr = o(ln S¢(r)) (r — +o00). In addition,
Inln S¢(r) < 2plnr (r > rg). Therefore, using Theorem 1, for the random entire function
defined by (2) a. s. for each a € C we obtain

InSy(r) < Ng,(r,a) + CiInln S¢(2r) +In2 + A(la])  (r > r(w)).
This implies that

—_— hle(T’)

< 1.
r—+oo Ny (r,a) —

On the other hand, using (21) with f,, — a instead of f and (18) with f, instead of f, for
arbitrary w € 2 and a € C we have

1
Ny, (r,a) <InSp(r)+ — +1In" |a| + In2 — In e, (a)].

2e
From this it follows that
lim 1 Sy(r) > 1.
rotoo N, (1, a)
Therefore, a. s. for every a € C relation (9) holds. O

Proof of Corollary 5. Let f be an entire function of finite order p and form (1) such that
relation (10) holds. For the function [y, introduced in Theorem 2, we have {;(r) < 2plnr
(r > r7). Therefore, using (38), for the random entire function defined by (2) a. s. for each
a € C and arbitrary o, 8 € R, a < f < o + 27, we obtain

Ny, (r,a,B,a) < p-a InS¢(r)+ Cylnr N 2,01n2 Se(r) (r>re(w,a)).

2

This together with (10) implies that

N _
llm fw(r7 a? 570’) S /B Oé
r—o+oo  In Sy(r) 27

Using equality (41) and Corollary 4, we complete the proof of Corollary 5. n
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Proof of Corollary 6. Let R € (0,+00), and let f € H(R) be an analytic function of form (1)
such that relation (11) holds. Put y(r) = InSy(r)/In z— (r € (0,R)) and prove that (11)
implies the existence of a set E of upper density 1 on (0, R) such that

REWCESS )
Then, obviously, (36) holds. We show that E is a set of upper density 1 on (0, +00).
Indeed, since the function
In S¢(r)
W) = —2I\V )
(r) Inln S¢(r)

is increasing on (7, +00), one has that

In?t, —Ins, — h(tn) _ h(sn) > 3h(sn)

= 31n? > ng).
" In In 3In“s, (n>ngp)

This implies that s, < v/t, (n > ng). Therefore,

T tn — °n
— Tfm 2%
n— 00 tn

— — dt
lim — > lim —
r=+o Jpnor) T N0 JBEA(sn,tn) tn

i. e. the set F has upper density 1 on (0, +00).

There is nothing to prove if the limit A\:=lim, ,, y(r) is equal to +o00. Let A < +o0,
and (\,) be an arbitrary sequence from the interval (A, +00) increasing to +o0o. Taking into
account that the function y(r) is continuous on (0, R), and using (11), it is easy to justify
the existence of sequences (s,) and (t,) increasing to R such that 0 < sy <ty < s1 < 1 <

o y(sn) = 20, y(tn) = Ay, and A, < y(r) < 2), for r € [s,,t,] and all n > 0. Put
E =J2[sn,tn]. Then, obviously, (42) holds. In addition,

1 InS¢(t,) - InSy(sy) 1
= =21 .
R—t, A A "R

In

This implies that R — ¢, < (R — s,)* (n > 0). Therefore,

m (R—r)dt>m (R—tn)dt:m(l_n t"):1
r—R EN(0,r) (R — t)2 T n—oo EN(sntn) (R _ t)? 00 R — s, )

i. e. the set F has upper density 1 on (0,R).
Let g = min{r € [0, R): Sy(r) > max{e®, /1 + |co|?}}, and x¢ = In S¢(rg). Put

1

R(r)=R—(R—r)exp {—m

} (r € [ro,R)).

Applying Lemma 3 for the functions u(r) = InS;(r) (r € [ro, R)) and p(z) = 22 (z > x),
we have

InS¢(R(r)) <elnS¢(r) (rero,R), r¢ Er), (44)

where E7 is a set of finite logarithmic measure on (0, R). Furthermore, obviously,

R(r) R
R(r)—r TRy

In*In S;(r) (r — R). (45)
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Let C3 = C} + 1, where C is the constant from Theorem 1. Using this theorem with
R = R(r) and taking into account (44) and (45), we see that for random analytic function (2)
a. s. for each a € C the inequality

1
InS¢(r) < Ny, (r,a) + CsInln S¢(r) —I—lnR

- T

+h(al) (rr(w) <r<R)  (46)

holds.

We consider the function g, introduced in Theorem 2. Putting Ciy = Ch ln2%, by
Theorem 2 for the random analytic function defined by (2) a. s. for each a € C and arbitrary
a,f ER, a< f < a+ 2m, we obtain

b — «

Ny, (r,a,B,a) < In S¢(r) + Cipy In? Se(r)le(r) (rs(w,a) <r <R). (47)

™

Next we note that (44) and (45) implies the inequality
li(r) < 2(Inln S¢(r) —In(R —r)) (re€[ro,R), r ¢ Er).
Using this inequality together with (47), we have

b — «

Ny (r,o,B,a) <
T

1
In S¢(r) + 011\3/21112 Se(r) (lnlnSf(T) +lnR — 7") =

— 1n5;(r) (52;0‘ + 02\3/21511;%’”) + y%) (ro(w,a) <r <R, ré Br).  (48)

Put Eg = E\E;. It is clear that the set Eg has upper density 1 on (0, R). Using (42) and
(48), a. s. for every a € C and all a, f € R, o < f < v + 27, we obtain
fim Ny, (r, o, B, a) < /3—04.
Eg>r—R - In Sg(r) 27

(49)

Then, obviously, the validity of the relation (4) as Eg > r — R follows from equality (41),
inequality (46) and inequality (49), applied to the angles § and « + 27 instead of the angles
a and (3, respectively. O
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